

The Arbelos in *n*-Aliquot Parts

Hiroshi Okumura and Masayuki Watanabe

Abstract. We generalize the classical arbelos to the case divided into many chambers by semicircles and construct embedded patterns of such arbelos.

1. Introduction and preliminaries

Let $\{\alpha, \beta, \gamma\}$ be an arbelos, that is, α , β , γ are semicircles whose centers are collinear and erected on the same side of this line, α , β are tangent externally, and γ touches α and β internally. In this paper we generalize results on the Archimedean circles of the arbelos. We take the line passing through the centers of α , β , γ as the x-axis and the line passing through the tangent point O of α and β and perpendicular to the x-axis as the y-axis. Let $\alpha_0 = \alpha$, $\alpha_1, \ldots, \alpha_n = \beta$ be n+1 distinct semicircles touching α and β at O, where $\alpha_1, \ldots, \alpha_{n-1}$ are erected on the same side as α and β , and intersect with γ . One of them may be the line perpendicular to the x-axis (i.e. y-axis). If the n inscribed circles in the curvilinear triangles bounded by α_{i-1} , α_i , γ are congruent we call this configuration of semicircles $\{\alpha_0 = \alpha, \alpha_1, \ldots, \alpha_n = \beta, \gamma\}$ an arbelos in n-aliquot parts, and the inscribed circles the Archimedean circles in n-aliquot parts. In this paper we calculate the radii of the Archimedean circles in n-aliquot parts and construct embedded patterns of arbelos in aliquot parts.

Figure 1. The case n=3

For the arbelos $\{\alpha, \beta, \gamma\}$ we denote by $\Phi(\alpha, \beta, \gamma)$ the family of semicircles through O, having the common point with γ in the region $y \geq 0$ and with centers on the x-axis, together with the line perpendicular to the x-axis at O. Renaming if necessary we assume α in the region $x \geq 0$. Let a, b be the radii of α , β . The semicircle γ meets the x-axis at -2b and 2a.

For a semicircle $\alpha_i \in \Phi(\alpha, \beta, \gamma)$, let a_i be the x-coordinate of its center. Define $\mu(\alpha_i)$ as follows.

Publication Date: March 22, 2005. Communicating Editor: Paul Yiu.

If $a \neq b$,

$$\mu(\alpha_i) = \begin{cases} \frac{a_i - a + b}{a_i}, & \text{if } \alpha_i \text{ is a semi-circle,} \\ 1, & \text{if } \alpha_i \text{ is the line.} \end{cases}$$

If a = b,

$$\mu(\alpha_i) = \begin{cases} \frac{1}{a_i}, & \text{if } \alpha_i \text{ is a semi-circle,} \\ 0, & \text{if } \alpha_i \text{ is the line.} \end{cases}$$

In both cases $\mu(\alpha_i)$ depends only on α_i and the center of γ , but not on the radius of γ . For α_i , $\alpha_j \in \Phi(\alpha, \beta, \gamma)$, the equality $\mu(\alpha_i) = \mu(\alpha_j)$ holds if and only if $\alpha_i = \alpha_j$. For any $\alpha_i \in \Phi(\alpha, \beta, \gamma)$,

$$\frac{b}{a} = \mu(\alpha) \ge \mu(\alpha_i) \ge \mu(\beta) = \frac{a}{b} \text{ if } a < b,$$

$$\frac{1}{a} = \mu(\alpha) \ge \mu(\alpha_i) \ge \mu(\beta) = -\frac{1}{a} \text{ if } a = b,$$

$$\frac{b}{a} = \mu(\alpha) \le \mu(\alpha_i) \le \mu(\beta) = \frac{a}{b} \text{ if } a > b.$$

For α_i , $\alpha_j \in \Phi(\alpha, \beta, \gamma)$, define the order

$$\alpha_i < \alpha_j$$
 if and only if
$$\begin{cases} \mu(\alpha_i) > \mu(\alpha_j) & \text{if } a \leq b, \\ \mu(\alpha_i) < \mu(\alpha_j) & \text{otherwise.} \end{cases}$$

This means that α_i is nearer to α than α_j is. Throughout this paper we shall adopt these notations and assumptions.

2. An arbelos in aliquot parts

Lemma 1. If α_i and α_j are semicircles in $\Phi(\alpha, \beta, \gamma)$ with $\alpha_i < \alpha_j$, the radius of the inscribed circle in the curvilinear triangle bounded by α_i , α_j and γ is

$$\frac{ab(a_j - a_i)}{a_i a_j - a a_i + b a_i} .$$

Proof. Let \mathcal{C} be the inscribed circle with radius r. First we invert $\{\alpha_i, \ \alpha_j, \ \gamma, \ \mathcal{C}\}$ in the circle with center O and radius k. Then α_i and α_j are inverted to the lines $\overline{\alpha_i}$ and $\overline{\alpha_j}$ perpendicular to the x-axis, γ is inverted to the semicircle $\overline{\gamma}$ erected on the x-axis and \mathcal{C} is inverted to the circle $\overline{\mathcal{C}}$ tangent to $\overline{\gamma}$ externally. We write the x-coordinates of the intersections of $\overline{\alpha_i}$, $\overline{\alpha_j}$ and $\overline{\gamma}$ with the x-axis as s, t and p, q with q < p. Then t < s since $a_i < a_j$.

By the definition of inversion we have

$$s = \frac{k^2}{2a_i} , t = \frac{k^2}{2a_j} , p = \frac{k^2}{2a} , q = -\frac{k^2}{2b} .$$
 (1)

Figure 2

Since the x-coordinates of the center and the radius of $\overline{\mathcal{C}}$ are $\frac{s+t}{2}$ and $\frac{s-t}{2}$, and those of $\overline{\gamma}$ are $\frac{p+q}{2}$ and $\frac{p-q}{2}$, we have

$$\left(\frac{s+t}{2} - \frac{p+q}{2}\right)^2 + d^2 = \left(\frac{s-t}{2} + \frac{p-q}{2}\right)^2$$

where d is the y-coordinate of the center of $\overline{\mathcal{C}}$. From this,

$$st - sp - tq + pq + d^2 = 0$$
. (2)

Since O is outside $\overline{\mathcal{C}}$, we have

$$r = \frac{k^2}{\left| \left(\frac{s+t}{2} \right)^2 + d^2 - \left(\frac{s-t}{2} \right)^2 \right|} \cdot \frac{s-t}{2} = \frac{k^2}{\left(\frac{s+t}{2} \right)^2 + d^2 - \left(\frac{s-t}{2} \right)^2} \cdot \frac{s-t}{2}.$$

By using (1) and (2) we get the conclusion.

Lemma 2. If α_i (resp. α_j) is the line, then the radius of the inscribed circle is

$$\frac{-ab}{a_i - a} (resp. \frac{ab}{a_i + b}).$$

Proof. Even in this case (2) in the proof of Lemma 1 holds with s=0 (resp. t=0), and we get the conclusion.

Theorem 3. Assume $a \neq b$, and let α_i , $\alpha_j \in \Phi(\alpha, \beta, \gamma)$ with $\alpha_i < \alpha_j$. The radius of the circle inscribed in the curvilinear triangle bounded by α_i , α_j and γ is

$$\frac{ab(\mu(\alpha_i) - \mu(\alpha_j))}{b\mu(\alpha_i) - a\mu(\alpha_j)}.$$

Proof. If α_i and α_j are semicircles, then

$$\frac{ab(\mu(\alpha_i) - \mu(\alpha_j))}{b\mu(\alpha_i) - a\mu(\alpha_j)} = \frac{ab\left(\frac{a_i - a + b}{a_i} - \frac{a_j - a + b}{a_j}\right)}{b \cdot \frac{a_i - a + b}{a_i} - a \cdot \frac{a_j - a + b}{a_j}} = \frac{ab(a_j - a_i)}{a_i a_j - aa_i + ba_j}.$$

Hence the theorem follows from Lemma 1. If one of α_i , α_j is the line, the result follows from Lemma 2.

Similarly we have

Theorem 4. Assume a = b, and let α_i , $\alpha_j \in \Phi(\alpha, \beta, \gamma)$ with $\alpha_i < \alpha_j$. The radius of the circle inscribed in the curvilinear triangle bounded by α_i , α_j and γ is

$$\frac{a^2(\mu(\alpha_j) - \mu(\alpha_i))}{a(\mu(\alpha_j) - \mu(\alpha_i)) - 1}.$$

The functions $x\mapsto \frac{ab(1-x)}{b-ax},\ a\neq b$ and $x\mapsto \frac{a^2x}{ax-1}, a>0$ are injective. Therefore, we have

Corollary 5. Let $\alpha_0, \ \alpha_1, \ldots, \alpha_n \in \Phi(\alpha, \beta, \gamma)$ with $\alpha_0 < \alpha_1 < \cdots < \alpha_n$. The circles inscribed in the curvilinear triangle bounded by α_{i-1} , α_i and γ $(i = 1, 2, \ldots n)$ are all congruent if and only if $\mu(\alpha_0), \mu(\alpha_1), \ldots, \mu(\alpha_n)$ is a geometric sequence if $a \neq b$, or an arithmetic sequence if a = b.

Theorem 6. Let $\{\alpha_0 = \alpha, \alpha_1, \dots, \alpha_n = \beta, \gamma\}$ be an arbelos in n-aliquot parts. The common radius of the Archimedean circles in n-aliquot parts is

$$\begin{cases} \frac{ab\left(b^{\frac{2}{n}} - a^{\frac{2}{n}}\right)}{b^{\frac{2}{n}+1} - a^{\frac{2}{n}+1}}, & \text{if } a \neq b, \\ \frac{2a}{n+2}, & \text{if } a = b. \end{cases}$$

Proof. First we consider the case $a \neq b$. We can assume $\alpha_0 < \alpha_1 < \dots < \alpha_n$ by renaming if necessary. The sequence $\frac{b}{a} = \mu(\alpha_0), \ \mu(\alpha_1), \dots, \mu(\alpha_n) = \frac{a}{b}$ is a geometric sequence by Corollary 5. If we write its common ratio as d, we have $\frac{a}{b} = d^n \left(\frac{b}{a}\right)$, and then $d = \left(\frac{a}{b}\right)^{\frac{2}{n}}$. By Theorem 3 the radius of the Archimedean circle is

$$\frac{ab(1-d)}{b-ad} = \frac{ab\left(1-\left(\frac{a}{b}\right)^{\frac{2}{n}}\right)}{b-a\left(\frac{a}{b}\right)^{\frac{2}{n}}} = \frac{ab\left(b^{\frac{2}{n}}-a^{\frac{2}{n}}\right)}{b^{\frac{2}{n}+1}-a^{\frac{2}{n}+1}}.$$

Similarly we can get the second assertion.

Note that the second assertion is the limiting case of the first assertion when $b \rightarrow a$.

Theorem 7. Let $\{\alpha_0 = \alpha, \alpha_1, \dots, \alpha_n = \beta, \gamma\}$ be an arbelos in n-aliquot parts with $\alpha_0 < \alpha_1 < \dots < \alpha_n$. Then α_i is the line in $\Phi(\alpha, \beta, \gamma)$ if n is even and $i = \frac{n}{2}$.

Otherwise it is a semicircle with radius

$$\begin{cases} \left| \frac{b^{\frac{2i}{n}-1}(a-b)}{a^{\frac{2i}{n}-1}-b^{\frac{2i}{n}-1}} \right|, & \text{if } a \neq b, \\ \left| \frac{na}{n-2i} \right|, & \text{if } a = b. \end{cases}$$

Proof. Suppose $a \neq b$. Since $\frac{b}{a} = \mu(\alpha_0), \ \mu(\alpha_1), \dots, \mu(\alpha_n) = \frac{a}{b}$ is a geometric sequence with common ratio $\left(\frac{a}{b}\right)^{\frac{2}{n}}$, we have $\mu(\alpha_i) = \left(\frac{a}{b}\right)^{\frac{2i}{n}} \left(\frac{b}{a}\right) = \left(\frac{a}{b}\right)^{\frac{2i}{n}-1}$. If n is even and $i = \frac{n}{2}$, then $\mu(\alpha_i) = 1$ and α_i is the line. Otherwise, $\mu(\alpha_i) \neq 1$ and α_i is a semicircle. Let a_i be the x-coordinate of its center. The radius of α_i is $|a_i|$ and $\frac{a_i - a + b}{a_i} = \left(\frac{a}{b}\right)^{\frac{2i}{n}-1}$. From this, $a_i = \frac{b^{\frac{2i}{n}-1}(a-b)}{b^{\frac{2i}{n}-1}-a^{\frac{2i}{n}-1}}$.

3. Embedded patterns of the arbelos

The proof for the case a = b is similar

Lemma 8. (a) If
$$a \neq b$$
, $\left(\frac{a'}{b'}\right)^n = \left(\frac{a}{b}\right)^{n+2}$.
(b) If $a = b$, $\frac{a'}{n} = \frac{a}{n+2}$.

Proof. If $a \neq b$ we have

$$a' = a - \frac{ab\left(a^{\frac{2}{n}} - b^{\frac{2}{n}}\right)}{a^{\frac{2}{n}+1} - b^{\frac{2}{n}+1}} = \frac{a^{\frac{2}{n}+1}\left(a - b\right)}{a^{\frac{2}{n}+1} - b^{\frac{2}{n}+1}},$$
$$b' = b - \frac{ab\left(a^{\frac{2}{n}} - b^{\frac{2}{n}}\right)}{a^{\frac{2}{n}+1} - b^{\frac{2}{n}+1}} = \frac{b^{\frac{2}{n}+1}\left(a - b\right)}{a^{\frac{2}{n}+1} - b^{\frac{2}{n}+1}},$$

by the definitions of a' and b'. Then the first assertion follows. The second assertion follows similarly.

Theorem 9. $\{\alpha', \alpha_0, \alpha_1, \dots, \alpha_n, \beta', \gamma'\}$ is an arbelos in (n+2)-aliquot parts.

Proof. Let us assume $a \neq b$. By Lemma 8 and the proof of Theorem 6, $\mu(\alpha_0)$, $\mu(\alpha_1), \ldots, \mu(\alpha_n)$ is a geometric sequence with common ratio $\left(\frac{a'}{b'}\right)^{\frac{2}{n+2}}$. Also by Lemma 8 we have

$$\frac{\mu(\alpha_0)}{\mu(\alpha')} = \frac{b}{a} \frac{a'}{b'} = \left(\frac{b'}{a'}\right)^{\frac{n}{n+2}} \frac{a'}{b'} = \left(\frac{a'}{b'}\right)^{\frac{2}{n+2}},$$

and

$$\frac{\mu(\beta')}{\mu(\alpha_n)} = \frac{a'}{b'} \frac{b}{a} = \frac{a'}{b'} \left(\frac{b'}{a'}\right)^{\frac{n}{n+2}} = \left(\frac{a'}{b'}\right)^{\frac{2}{n+2}}.$$

The case a = b follows similarly.

Let $\{\alpha, \beta, \gamma\}$ be an arbelos and all the semicircles be constructed in $y \geq 0$ such that the diameters lie on the x-axis. Let $\alpha_{-1} = \alpha$, $\alpha_1 = \beta$ and $\gamma_1 = \gamma$. If there exists an arbelos in (2n-1)-aliquot parts $\{\alpha_{-n}, \alpha_{-(n-1)}, \ldots, \alpha_{-1}, \alpha_1, \ldots, \alpha_n, \gamma_{2n-1}\}$ with $\alpha_{-n} < \alpha_{-(n-1)} < \cdots < \alpha_{-1} < \alpha_1 < \cdots < \alpha_n$, we shall construct an arbelos in (2n+1)-aliquot parts as follows.

Let γ_{2n+1} be the semicircle concentric to γ and tangent externally to all Archimedean circles of the above arbelos. This meets the x-axis at two points one of which is in the region x>0 and the other in x<0. We write the semicircle passing through O and the former point as $\alpha_{-(n+1)}$ and the semicircle passing through O and the latter point as α_{n+1} . Then $\{\alpha_{-(n+1)}, \alpha_{-n}, \ldots, \alpha_{-1}, \alpha_1, \ldots, \alpha_{n+1}, \gamma_{2n+1}\}$ is an arbelos in (2n+1)-aliquot parts by Theorem 9. Now we get the set of semicircles

$$\{\ldots,\alpha_{-(n+1)},\alpha_{-n},\ldots,\alpha_{-1},\alpha_1,\ldots,\alpha_n,\alpha_{n+1},\ldots,\gamma_1,\gamma_3,\ldots,\gamma_{2n-1}\ldots\},$$

where $\{\alpha_{-n}, \ldots, \alpha_{-1}, \alpha_1, \ldots, \alpha_n, \gamma_{2n-1}\}$ form the arbelos in (2n-1)-aliquot parts for any positive integer n. We shall call the above configuration the *odd* pattern.

Theorem 10. Let δ_{2n-1} be one of the Archimedean circles in

$$\{\alpha_{-n}, \alpha_{-(n-1)}, \dots, \alpha_{-1}, \alpha_1, \dots, \alpha_n, \gamma_{2n-1}\}.$$

Then the radii of α_{-n} and α_n are

$$\frac{a^{2n-1}(a-b)}{a^{2n-1}-b^{2n-1}}$$
 and $\frac{b^{2n-1}(a-b)}{a^{2n-1}-b^{2n-1}}$

and the radii of γ_{2n-1} and δ_{2n-1} are respectively

$$\frac{(a^{2n-1}+b^{2n-1})(a-b)}{a^{2n-1}-b^{2n-1}} \quad \text{and} \quad \frac{a^{2n-1}b^{2n-1}(a-b)(a^2-b^2)}{(a^{2n-1}-b^{2n-1})(a^{2n+1}-b^{2n+1})}.$$

Proof. Let $\overline{a_{-n}}$ and $\overline{a_n}$ be the radii of α_{-n} and α_n respectively. By Lemma 8 we have

$$\left(\frac{\overline{a_{-n}}}{\overline{a_n}}\right)^{\frac{1}{2n-1}} = \left(\frac{\overline{a_{-(n-1)}}}{\overline{a_{n-1}}}\right)^{\frac{1}{2n-3}} = \dots = \frac{\overline{a_{-1}}}{\overline{a_1}} = \frac{a}{b}. \tag{3}$$

Since γ_{2n-1} and γ are concentric, we have

$$\overline{a_{-n}} - \overline{a_n} = a - b . (4)$$

By (3) and (4) we have

$$\overline{a_{-n}} = \frac{a^{2n-1}(a-b)}{a^{2n-1} - b^{2n-1}},$$

$$\overline{a_n} = \frac{b^{2n-1}(a-b)}{a^{2n-1} - b^{2n-1}}.$$

It follows that the radius of γ_{2n-1} is

$$\overline{a_{-n}} + \overline{a_n} = \frac{(a^{2n-1} + b^{2n-1})(a-b)}{a^{2n-1} - b^{2n-1}},$$

and that of δ_{2n-1} is

$$\frac{(a^{2n-1}+b^{2n-1})(a-b)}{a^{2n-1}-b^{2n-1}} - \frac{(a^{2n+1}+b^{2n+1})(a-b)}{a^{2n+1}-b^{2n+1}}$$

$$= \frac{a^{2n-1}b^{2n-1}(a-b)(a^2-b^2)}{(a^{2n-1}-b^{2n-1})(a^{2n+1}-b^{2n+1})}.$$

As in the odd case, we can construct the even pattern of arbelos

$$\{\ldots\beta_{-(n+1)},\ \beta_{-n},\ \ldots,\ \beta_{-1},\ \beta_0,\ \beta_1,\ \ldots,\ \beta_n,\ \beta_{n+1},\ \ldots,\ \gamma_2,\ \gamma_4,\ \ldots,\ \gamma_{2n}\ \ldots\}$$
 inductively by starting with an arbelos in 2-aliquot parts $\{\beta_{-1},\ \beta_0,\ \beta_1,\gamma_2\}$, where $\beta_{-1}=\alpha,\ \beta_1=\beta$ and $\gamma_2=\gamma$. By Theorem 9, $\{\beta_{-n},\ldots,\beta_{-1},\ \beta_0,\ \beta_1,\ldots,\beta_n,\gamma_{2n}\}$ forms an arbelos in $2n$ -aliquot parts for any positive integer n , and β_0 is the line by Theorem 7. Analogous to Theorem 10 we have

Theorem 11. Let δ_{2n} be one of the Archimedean circles in

$$\{\beta_{-n}, \beta_{-(n-1)}, \dots, \beta_{-1}, \beta_0, \beta_1, \dots, \beta_n, \gamma_{2n}\}.$$

The radii of β_{-n} and β_n are

$$\frac{a^n(a-b)}{a^n-b^n}$$
 and $\frac{b^n(a-b)}{a^n-b^n}$,

and the radii of γ_{2n} and δ_{2n} are respectively

$$\frac{(a^n+b^n)(a-b)}{a^n-b^n}$$
 and $\frac{a^nb^n(a-b)^2}{(a^n-b^n)(a^{n+1}-b^{n+1})}$.

Corollary 12. Let c_n and d_n be the radii of γ_n and δ_n respectively.

$$a_n = b_{2n-1},$$

$$a_{-n} = b_{-(2n-1)},$$

$$c_{2n-1} = c_{2(2n-1)},$$

$$d_{2n-1} = d_{4n-2} + d_{4n}.$$

Figure 3 shows the even pattern together with the odd pattern reflected in the x-axis. The trivial case of these patterns can be found in [2].

Figure 3

4. Some Applications

We give two applications here, with the same notations as in §3.

Theorem 13. The external common tangent of β_n and β_{-n} touches γ_{4n} for any positive integer n.

Proof. The distance between the external common tangents of β_n and β_{-n} and the center of γ_{2n} is $\frac{\overline{b_n}^2 + \overline{b_{-n}}^2}{\overline{b_n} + \overline{b_{-n}}}$ where $\overline{b_n}$ and $\overline{b_{-n}}$ are the radii of β_n and β_{-n} . By

Theorem 11 this is equal to
$$\frac{(a-b)(a^{2n}+b^{2n})}{a^{2n}-b^{2n}}$$
, the radius of γ_{4n} .

Theorem 14. Let BK_n be the circle orthogonal to α , β and δ_{2n-1} , and let AR_n be the inscribed circle of the curvilinear triangle bounded by β_n , β_0 and γ_{2n} . The circles BK_n and AR_n are congruent for every natural number n.

Proof. Assume $a \neq b$. Since AR_n is the Archimedean circle of the arbelos in 2-aliquot parts $\{\beta_{-n}, \beta_0, \beta_n, \gamma_{2n}\}$, the radius of AR_n is

$$\frac{\overline{b_n} \, \overline{b_{-n}} (\overline{b_n} - \overline{b_{-n}})}{\overline{b_n}^2 - \overline{b_{-n}}^2} = \frac{a^n b^n (a-b)}{a^{2n} - b^{2n}},$$

by Theorem 6 and Theorem 11.

On the other hand BK_n is the inscribed circle of the triangle bounded by the three centers of α , β , δ_{2n-1} . Since the length of three sides of the triangle are $a+d_{2n-1}$, $b+d_{2n-1}$, a+b, the radius of BK_n is

$$\sqrt{\frac{abd_{2n-1}}{a+b+d_{2n-1}}} = \frac{a^n b^n (a-b)}{a^{2n} - b^{2n}},$$

by Theorem 10.

This theorem is a generalization of Bankoff circle [1]. Bankoff's third circle corresponds to the case n=1 in this theorem.

References

- L. Bankoff, Are the twin circles of Archimedes really twins?, Math. Magazine, 47 (1974) 214– 218.
- [2] H. Okumura, Circles patterns arising from results in Japanese geometry, *Symmetry: Culture and Science*, 8 (1997) 4–23.

Hiroshi Okumura: Department of Information Engineering, Maebashi Institute of Technology, 460-1 Kamisadori Maebashi Gunma 371-0816, Japan

E-mail address: okumura@maebashi-it.ac.jp

Masayuki Watanabe: Department of Information Engineering, Maebashi Institute of Technology, 460-1 Kamisadori Maebashi Gunma 371-0816, Japan

E-mail address: watanabe@maebashi-it.ac.jp