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Gossard’s Per spector and Proj ective Consequences

Wiladimir G. Boskoff, Laurentiu Homentcovschi, and Bogdan D. Su&eav

Abstract. Considering as starting point a geometric configuration studied, among
others, by Gossard, we pursue the projective study of a triangle in ttlel&an
plane, its Euler line and its nine-point circle, and we relate Pappus’ Thetore

the nine-point circle and Euler line.

1. Introduction

The relative position of Euler’s line with respect to the sides of a triangle has
raised the geometers’ interest since the very first paper on this topichheb
Euler’s classical work [10].

In 1997, problem Al from the W. L. Putnam competition explored the case
when Euler’s line is parallel to one of the sides of a triangimer. Math. Monthly
published Problem 10980 proposed by Ye Zhong Hao and Wu Wei Gitaase
statement is the followingConsider four distinct straight lines in the same plane,
with the property that no two of them are parallel, no three are concurrand
no three form an equilateral triangle. Prove that, if one of the lines is paradiel
the Euler line of the triangle formed by the other three, then each of the foen giv
lines is parallel to the Euler line of the triangle formed by the other thrée the
Editorial Comment following the solution of problem 10980 (see vol. 1114200
pp.824), the editors have pointed out the meaningful contributions to theyhisto
this problem, especially Gossard’s presentation at an A. M. S. corfeiari9ls.

A generalization from 1999, given by Paul Yiu, is mentioned in [13].

In the Bulletin of the A. M. Sfrom 1916, we find O. D. Kellogg's report on
Gossard’s 1915 talk at the AMS Southwestern Section Conferenc§l&geAs
far as we know, Gossard’s paper has not been published, althoughomefrom
the report what he proved and what methods he used. The summanyglshed
by the Bulletin, is the following: "Euler proved that orthocenter, circumcenter,
and centroid of a triangle are collinear, and the line through them has reckilke
name Euler line. He also proved that the Euler line of a given triangle together
with two of its sides forms a triangle whose Euler line is parallel with the third side
of the given triangle. By the use of vector coordinates or ordinary ptojecoor-
dinates, Professor Gossard proves the following theorem: the three Hudsrof
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the triangles formed by the Euler line and the sides, taken by twos, of a giaen tr
gle, form a triangle triply perspective with the given triangle and having the same
Euler line. The orthocenters, circumcenters and centroids of these immytes

are symmetrically placed as to the center of perspective.”

Our goal in the present note goes beyond providing elementary paratsese
facts, and aims to explore the deeper geometric meaning of a phenomenaon see
the above mentioned results. Application 1 is Ye and Wu'’s problem. Applications
3 and 4, proved below, are just particular cases of Application 1. Bitbpo 1 is
Gossard result from 1916, with a different proof. Furthermore, tigiral tools
in Gossard’s work were ordinary projective coordinates. That's Whyould be
natural to explore from a projective viewpoint the geometric structurerig by
Euler’s original contribution, which made the substance in Gossardk.othe
last part of our paper, we discuss the projective viewpoint on thewelptsition
of the Euler line and the three lines forming a given triangle. We will show how
Euler’s line can be regarded as the axis of a projectivity between two sfdes
triangle. This result was also proved by D. Barbilian (see [4]), andpeaps in
a note unpublished during Barbilian’s life. The result is presented belovuiin
Proposition 4. We have been able to reconstruct the context of Barbiliaork
and we have obtained incidence results that complete the discussion ord Ye an
Wu’s problem.

Finally, with Propositions 3 and 4, which as far as we know appear fortste fi
time here, we extend the projective analysis on this geometric strudtarea(
triangle, its Euler line and its nine-point circle) and will relate Pappus’ Témao
the nine-point circle and Euler line. We also study the parallelism of Eulegs lin
with one of the sides of the triangle from the projective viewpoint. In conciysio
one of the most important consequences of our investigation is that weblare a
to better understand the geometric connections between Euler’s line anddhe n
point circle using projective methods. Our geometric motivation was the belief
that beyond the synthetic and analytic methods, one can fathom the entihe dep
of a geometry problem by understanding the projective backgroundceftain
geometric structure.

2. Synthetic and analytic viewpoint

First, we prove a Lemma which will become our main tool of investigation. This
Lemma was inspired by Ye and Wu'’s problem. Consider the Euclidean plahe an
a Cartesian frame. Let, B, C be three arbitrary points in the Eulcidean plane.

Lemma 1. Denote bym g the slope of Euler’s line il ABC and bymy, ms, ms
the slopes of the lineBC, AC, and AB, respectively. Then

mimsg + mgmy + moms + 3

mgp = .
mi + mg + m3 + 3mimaoms

Proof. Measuring the slope of the angle betwdsf and the Euler’s line oA ABC,
we have (see Figure 1):
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H
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Figure 1
mi — mg HS AM — AH — ON
— — = tanZ(HOS) = =
Tt mymg - n4HOS) =g BN — BM

2Rsin BsinC — 2R cos A — Rcos A
Rsin A — 2Rsin C cos B

2sin Bsin C' + 3 cos(B + C)

sin(B 4+ C') — 2sin C cos B

3cos BcosC —sin BsinC

sin B cos C — sinC cos B
3 —tan BtanC

tan B — tan C'
Replacing in the last relation the following expressions

ma3 — my mi1 — My
tanB = —, tanC = ——
14+ mims 1+mimag
we get the equality
g — m3—my | mi—my
myp —mpg 1+mims 14+mime
msz—mi __ mi—ma
1 + mimg 1+mims 1+mimeo

Cross-multiplying and collecting the like-terms, we obtain:
mimo +mims +mimpg +moms +mompg +msmg +3mgmimoms + 3 = 0.

Solving formg in this relation immediately yields the relation from the statement
of our lemma. 0

We should remark here that any other relative positions of the pdinf3, C
yield the same result. Now, we present several applications of this lemma.
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Application 1. (Problem 10980American Mathematical Monthlyproposed by
Ye Zhong Hao and Wu Wei Chao, 109 (2002) 921, solution, 110 (28R23)824.)
Consider four distinct straight lines in the same plane, with the property that n
two of them are parallel, no three are concurrent, and no three forrgualateral
triangle. Prove that, if one of the lines is parallel to the Euler line of the triangle
formed by the other three, then each of the four given lines is parallel tButes
line of the triangle formed by the other three.

Solution: Denote bymy, ms, mg, andmy the slopes of the four lines , ds, ds, dy,
respectively. Suppose that Euler’s line of the triangle formed by thedines, ds
is parallel tods and has slopeig. Thenmpg = my and we get

mimeo + mims + mimg + mams + momy + mzmy + 3mgmimaoms + 3 = 0.

This relation is symmetric in any one of the slopes and the conclusion follows
immediately. O

Application 2. ConsiderAABC and AA’B’'C’ such that the measure of the ori-
ented angles between the straight line8 and A’B’, AC andA’C’, and BC and
B'C’, respectively, are equal 8. Then the measure of the angle between Euler’s
line of AABC and Euler’s line ofA A’ B'C" is alsoa.

Solution:We consider the following construction (see Figure 2). On the circum-
circle of AABC, we consider the pointd”, B” andC” such thatA” B”||A'B’,
A"C"||A’C" and B"C"|| B'C’". More precisely, we choosd4” such that the angle

(AOA")is a.
A
A/I

A’

B’
B

Figure 2

Let us consider now the rotatioRg, of centerO (O is the circumcenter of
AABC) and oriented angle. Thenm(Z(AB, A"B")) = m(£(AC,A"C")) =
m(Z(BC,B"C"))yieldsA” = R}(A), B” = R}(B), C" = R}(C). We denote
by e, ¢’ ande” Euler's lines of AABC, AA’B'C’, and respectivel\AA” B"C".
ThenAA”B”C" is obtained by rotating\ ABC aboutO by a. Thus, all the ele-
ments of AABC rotate abouD. This meang” = R (e), or m(Z(e,€")) = a.
Since the slopes satisfy the following equalities, gr = mag, mancr =
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marcr, andmpren = mpicr, thenmer = mys, which actually meanm(z(e, 6,)) =
. g

Remark.Let AABC andA A’ B'C’ be two triangles with the propertyB_L A’ B’,
ACLA'C', BCLB'C'. Thenthe Euler lines of the two triangles are perpendicular.

We can prove this Remark directly from Lemma 1. However, we can also pro-
vide a direct argument for its proof. Denote hyj, m/,, m/, the slopes of the side
and bym/;, the slope of Euler’s line oA A’B'C’. Then

= mimé + mhm) + mymf + 3
= —

?T;(m)?mﬂ) # () () +8
(m) + (o) = (=) 3 (o) (=) (=)

m1 + mo + ms + 3mimams

mimeo + mgmi + momsg + 3
1

Ty
This proves that the two lines are perpendicular.

Application 3. In the acute trianglel BC, Euler’s line is parallel taBC' if and only
if tan BtanC = 3.

Note: In [17], it is mentioned that this problem was proposed by DadnRei.
We have discussed this application in [6]. The solution uses a direct trigetnic
argument. We present here the analytic argument based on Lemma 1.

Solution: Choose a coordinate system so thatitkexis is parallel taBC. If we
denote byn; the slope of the straight linBC, thenm = 0. Denotingms, mg, me
the slopes of the straight line$C, AB, and Euler’s linee, respectively, we get
from Lemma 1:

momsg + 3
Me = ——.
mo + ms3
Thus, Euler’s linee of AABC' is parallel toBC' if and only if m, = 0, which
is equivalent tanoms = —3. Now we take into account that, = — tan C and
mg = tan B (or, depending on the position &fA BC, we could haveny, = tan C
andmgs = — tan B). Consequentlytan B tan C' = 3. O

For an interesting connection between the formula obtained herefaand
Tzitzeica surfaces, a topic studied in depth in affine differential geonsstey[2].
For a graphical study of Tzitzeica surfaces by using Mathematica, sefedidthe
importance of Tzitzeica's surfaces in the development of differentiaingéxy at
the beginning of the 20th century, see [1].

Application 4. (W. L. Putnam Competition, 1997) A rectanglé O M F, has sides
HO =11andOM = 5. Atriangle ABC hasH as the intersection of the altitudes,
O the center of the circumscribed circlie/ the midpoint of BC, and F' the foot of
the altitude fromA. What is the length oBC ?
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Solution: Since Euler’s line is parallel t&C, by the previous application, we
havetan B tan C' = 3. This is just a consequence of the previous application. We
can continue our argument as in [14], pg.233, or [6]. Expressing3 andtan C
from trianglesABF and AF'C, respectively, we get

ha  ha

BF FC
SinceHG||BC, we haveh, = AF = 3FH = 3-5 = 15. Therefore BF - FC =
1515 — 75 Namely, we expresBC? = (BF+FC)* = (FC—BF)?*+4BF-FC.
To compute the first term in the last expression we write— BF = FM+MC —
(BM — FM) = 2FM = 20H = 22. Therefore,BC? = 222 + 4 .75 = 784,
thusBC' = 28. U

Lemma 2. Euler’s line of AABC intersects the linegl B and AC' in M, respec-
tively N. Then Euler’s line oA AM N is parallel to BC.

Figure 3

Proof. Choose a coordinate system so thatithaxis is parallel toaBC, as in Ap-
plication 3 (see Figure 3). If we denote by, the slope of the straight lin8C,
thenm; = 0. Denotingms, ms, m. the slopes of the straight linesC, AB, and
respectively Euler’s line. By Lemma 1.

_ mamg +3

me = ’
mo + ms

and the slope of Euler's line @dkAM N is

MeMm2 + Memg + moms3 + 3
Me + Mo + M3 + 3memaoms’

Mer =
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In fact, the numerator of the last expression is

Mmemsa + Mmem3 + moms + 3
= me(ma + m3) + moms + 3

B ( moms + 3

3=0.
m——— > (mg + m3) + moms +

In fact, we proved that:., = 0, which means that’|| BC. O

Application 5. Consider two triangles such th&ABC = AA'B’'C’ and they
have the same Euler’s line. ThexA’'B’'C’ is obtained fromA ABC either by a
translation, or by a central symmetry. O
Example 1.Problem 244 in [19] states the following. L&t be the orthocenter
of AABC, and O, Oy, O, the circumcenters of triangleBHC,CHA, AHB.
ThenAABC = AO,0,0, have the same nine-point circle and the same Euler’s
line. This provides us an example of two triangles that have the same Euler’s lin
(see Figure 4).

Figure 4.

Example 2Now we describe two triangles of interest that have the same Euler’s
line. ConsideA ABC' and its circumcircle€. Consider also the incircle tangent to
BC, AC andAB respectively inD, E, andF. On the straight linesll, BI, CI we
consider the excentersd,, the centers of the excircles), I, andi.. Remark that
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the circumcircle ofA ABC is the nine-point circle oA, I, 1., becaused, B, C
are the feet of the altitudes (e.d.l, L1y1.).

Iy,

Figure 5.

Thus,I is the orthocenter i\ I, 1,1, andO is the center of the nine-point circle
in Al II.. Therefore,OI is Euler’s line inAl,II~. Remark thatA DEF and
Al Iy1. have parallel sides. Therefore their Euler’s lines must be parallel (we ma
say that this is a consequence of Application 2). But the circumcentAdof F'
is the point/. This means that the Euler’s line &DFEF passes througli and,
being parallel ta) I, must beO1. O

3. Gossard’s per spector
In this section we present an elementary proof of Gossard’s resulticif&8].

Proposition 3 (Gossard, [15]) Denote bye the Euler line of an arbitranA ABC
in the Euclidean plane. Suppose thantersectsBC, AB, AC in M, N, and re-
spectivelyP. Denote byey, eq, e3 Euler's lines ofAANP, ABMN,andACPM,
respectively. Denotel’, B’,C’ the intersection of the following pair of lines:
eaNes, e1Nes, ande; Neg, respectively. TheA A’B'C’ = AABC,andAA'B'C’
has the same Euler ling and there exists a point; (called Gossard’s perspec-
tor) on the linee such thatA A’ B’C" is the symmetric oA ABC' by the symmetry
centered inlg.

The proof presented below is based on Lemma 1. Thus, we claim that it may
be more elementary than Gossard’s original proof, as it is presentedlmgl in
[15]. An important dle in the proof is played by the conditions|| BC, es|| AC,
63HAB.
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4(0, 1)

€1

M B(b,0) C(c,0)

€2

Figure 6

Proof. We choose coordinate axis such that the verticea AfBC' have the co-
ordinatesA(0,1), B(b,0),C(c,0) (see Figure 4). Let be the gravity center of
AABC; thenG(b < 1) The slope of Euler’s line iM ABC'is given by

momg +3 _(—%) (—5) +3  3be+1

mo + ma —%—% b+c '

Me = —

Thus, the equation of Euler’s linegs= =, 3b°’+1 x—bc. The coordinates of the points
M, N,andP are:
be(b+ c)
M(|———
< 3bc+1 ’O> ’

b(b+c)(bc+1) 2b%c —bc® + b
< 3b2c+2b+c’ 3b20—|—2b—|—c>
c(b+c)(bec+1) 2bc® —b%c+c
( 3bc2+2c+b 3b02+20+b>
The linee; passes through the center of gravity/®fi N P and is parallel taBC,
therefore it has the equation
. _ YN+ Yp+ya
(e1) y= ST
At the intersection of lines ande; we have the poinf) whose coordinates are

b+c 1
E +3b
Q<3bc+1 g E+3be). 3 )
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where we have denoted by

B 2b%c —bc® + b . 2b02—bzc+c+1

© 3b%2c+2b4+c¢  3bc2+2c+b ’
The center of gravity oA BM N, denotedR, has the coordinates

(xR,yR>:(;<bC<b+C> ) b<b+c><bc+1)> | 21720—bc2+b)

3bc + 1 302¢c+2b4+c )3 3b2c+2+c

Euler's line inABM N passes througR and is parallel tcAC, thus it has the
equation

1
(e2) : y_yR:_E(x_xR)~
Denote bysS the intersection of the linesandes. We get
(3bc+ 1)(xr + cyr) — be(b + ¢)
3bc? +2¢+b ’

To emphasize the transformation by symmetry (as described in [15]), wettlatm
ys + Yp = yo + ym- This is equivalent to

(3bc+ 1) (g + cyr) —be(b+c)  2bc? — bc+c
3bc? +2c+b 3bc? +2c+b
1 (262c—bc2+b 2bc? —b’c+c 1)

=3\ et mre T B2t 2etb

By replacingz r andyr and simplifying the relation, we obtain the desired equal-
ity. Therefore, the segmenf®S] and [Q ] have the same midpoint. (It is not
necessary to check also thap + x5 = zg + xu, Since P, S,Q and M are
collinear.)

Denote byl the common midpoint of those two segments. As above, one can
prove thatl is the midpoint of the segmefniNT|, where{T} = e3 Ne. The
analogy of the computation can be further seen since the coordinates are
symmetric inb andc. Thus, with the above notation fdf, I has the coordinates

1 (be(b+c) b+c 1 1
(¥16:y16) = (2 < Sbe+1 | 3bet 1 '3(E+3bc))’ 6E>'
We can write the coordinates in the form
1 b+ec 1
Io | = E +6be), -F | .
G<6 She 1 F 00 G >

This is the point callethe Gossard perspectdRenoteS;,, the symmetry of center

I inthe Euclidean plane. Sineg||BC, Q € ey M € BC, andl is the midpoint

of [QM], we havee; = Sy, (BC). Similarly eo = Sy, (AC), e3 = Si,(AB).
Then, we have obtained the following:

{A,} =egye3 = S[G(AC) N S[G(AB) = S[G(ACOAB) = S[G({A})

Similarly, {B'} = S;,({B}), and{C"} = S, (C).
ConsequentlyAA’B'C’ = AABC, andAA’B'C’ = S1,(AABC).
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Denoting G and G’ the gravity centers oNABC and AA’B'C’, we have
{G'} = S1,({G}). For the orthocenters we get a similar correspondeqité} =
S1,({H}). Thus,e’ = Sp,(e), wheree’ is Euler’s line of AA’B’C’. But I €
e. Thus, Euler’s linee passes through the center of symmetry. We deduce that
Si.(e) = e, or e’ = e. Finally, we proved thah ABC and AA’B'C’ have the
same Euler’s line. This completes the analytic proof of Gossard’s pruspbeo-
rem, as mentioned in our introduction (see [15]). O

Example 3. We have seen in Example 1 (see [19], 244) thal/ifis the or-
thocenter ofAABC, and O,, O,, O, are the circumcenters of trianglésH C,
CHA, AHB, thenAABC andAO,0,0,. have the same Euler’s line (see Figure
4). In fact,0,, Oy, andO,. are the symmetric points @? with respect to the sides
BC, AC and, respectivelyd B. Denote byA;, By, andC; the midpoints of the
sidesBC, AC and, respectivelyAd B.

Then H is the circumcenter oAO,0,0.. Actually, AO,O,O. is the homo-
thetic of A A, B1C1 by homothety of cented and ratio 2. ThusAO,0,0. has the
sides parallel and congruent to the sides\of BC, and, furthermoreQO, | BC,
and also00, 1. 0,0,, (and the similar relations). This proves tlgais the ortho-
center ofAO,0,0.. ThereforeAABC andAO,0,0. interchanged among them
the orthocenters and the circumcenters. This is the argument to see thatdhg E
lines in the two triangles are the same and the two triangles have the same cen-
ter of the nine-point circle, sina@y is the midpoint ofOH. Further, AABC and
AO,0,0, are symmetric with respect ©0g. Therefore, Gossard’s perspector in
AO,0,0, is the symmetric of Gossard perspectoNil BC' with respect ta)y,
the center of the nine-point circle.

4. Projective viewpoint

Consider now a projectivity’ : dy — ds. (See also [7, pp.39 ff], [8, pp.9-11])
The geometric locus of the points from which the the projectivity is seen as an
involution of pencils of lines is called axis of the projectivity.

Mo

My

Ny
No

Figure 7.

More precisely (see Figure 7), any projectivity relating ranges on twindts
lines determines another special line, the axis of projectivity, which conta@ns
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intersection of the cross-joints of any pairs of corresponding pointg8see.36-
37]). This result is known athe axis theoremTo illustrate it, if M; — N; and
My — No, thenthe poin{ P} = M; NN M, Ny lies on the axis of the projectivity,
since we have the mapping = PM; — PNy = ro andry = PMy — PNy =
ry. Thus,r; — r9 andry — r1, which means that the projectivitfy : d; — ds is
seen as an involution. As a consequence, we remind here the well-keonretyic
structure calledPappus’ line

Figure 8.

Let A, B,C € dy andA’, B',C" € dy. Then the point{ M} = AB' N BA/,
{N} =AC'Nn AC'nCA',{P} = BC' N CB, are collinear (see Figure 8). This
result can be viewed as an immediate consequence of the axis theorerad,Inde
consider the projectivity : d; — do uniquely determined bA — A’, B — B’,
C — C'. By the axis theorem, we get immediately that the po{its} = AB’ N
BA', {N} = AC'n AC' nCA’, {P} = BC' N CB’ are collinear. With this
preparation, we are able to show tlia¢ Euler’s line of a triangleABC' can be
regarded as the axis of projectivity for three suitable projectivities between the
sides ofAABC (see Figure 9).

A

B,

B A ;4/ C
Figure 9.



Gossard’s perspector and projective consequences 181

Denote byA’, B, C’ the midpoints of the sideBC, AC, and respectivelyl B.
Denote byA, By, C; the feet of altitudes fromd, B, C. We use the standard no-
tations forO, the circumcircleG the center of gravity, and/ the orthocenter of
AABC. There are three projectivities, each one between two sidasid#C'. One
of them isfo : BC — AC, the projectivity determined by — A, A1 — By,
A" — B’. SinceH andG appear as cross-joints points, they lie on the axis of pro-
jectivity of fc. Specifically,{H} = AA; N BBy, {G} = BB’ N AA’. Since two
points determine uniquely a line, and sinGeand H determine Euler’s line, this
means thathe Euler’s line is identified with the axis of projectivify:.. Further-
more, on the Euler’s line we get a new poifif2 45} = A; B'N A’ B;. We can also
emphasize the pair of homologous points that deterringhe circumcenter, in
this projectivity. Extend the line determined by the verteand byO and denote
{X} =A0NBC. Similarly, {Y'} = BON AC. Since in our projectivityB — A,
thenX — Y. Thus, on the axis of projectivity we obta{l} = AX N BY.

Considering similar constructions for the projectivitigsand f 5, we obtain the
following fact.

Proposition 4 (Barbilian [4]). In AABC, let A’, B, C’ be the midpoints of the
sidesBC, AC, and respectivelyd B. Denote byA;, B1, C; the feet of altitudes
from A, B, C. Then the point§Q 45} = A1B' N A'By, {Qcp} = C1B' N C'By,
{Qac} = A1C" N A'Cy are collinear and they lie on Euler’s line & ABC.

A
B,
B/
H
o
B Ay A’
T
Figure 10.

In the first part, we have presented Applications 3 and 4, where wesgive
thetic and trigonometric characterizations of the fact that Euler’s line idlplara
to a side of the triangle. We study here the following question: What is projec-
tive condition that the projectivitys : BC — AC must satisfy such that Euler’s
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line is parallel toBC? Denote by(e) Euler’s line inAABC. (See Figure 10.) Let
{T} = ACN(e),{U} = BCN(e). We need to determine the pairs of straight lines
that characterize in a projectivity the poifsandU. Recall that the projectivity
fc has as homologous poinis — A. To getT’, consider the pai€ — (e) N AC.
Similarly, we getU by the pair(e) " BC' — C. Therefore we have obtained the
projective characterization of the fact that the Euler line is parallel to adfittee
triangle. Thus, we are able to state the projective counterpart of Applicatio
which is the trigonometric characterization of this parallelism.

Proposition 5. In AABC, let (e) be the Euler’s line. The sufficient condition that
(e)||BC, is that the projectivityf- hasoo — C as pair of homologous points. Sim-
ilarly, to have(e)||AC, it is sufficient thatfc hasC' — oo as pairs of homologous
points.

Four our next step, we need to recall here Pappus’ Theorem on the. diet
A,B,C and A’, B’, C’ six points on the circleC. Then the intersection points
AB'NA'B, AC' n A/C and BC' N B'C are collinear. To recall the idea of the
most direct proof, consider the projectivify: C' — C uniquely determined by
A — A", B - B, C — (' Then, the intersection points mentioned in the
statement lie precisely on the axis of the projectivity. With this observation, we
obtain that Euler’s line is the axis of projectivity of a certain projectivity withia th
nine-point circle. The result is the following.

Proposition 6. ConsiderA’, B’, C’ the midpoints of the sideBC, AC and re-
spectivelyAB. Let A1, By and C; the feet of the altitudes. Consider the projec-
tivity ¢ uniquely determined by\; — By, A’ — B’, By — A,. Then the points
A1As N B1By = {H} (the orthocenter oAABC), A1B' N A'By = {Q4p} and
A’Ay N B'By = {0y} (the center of the nine-point circle) are collinear on the axis
of projectivity of¢.

Figure 11.
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The proof is just a direct application of Pappus’ Theorem on the cirotethie
geometric structure described in the statement. SH@nd2 5 are on Euler's
line, the axis of projectivity and Euler’s line must be the same straight line. As a
consequence, the third poiiidy, the center of the nine-point circle, must be on the
axis of projectivity, thus on Euler’s line.

Proposition 4 appears in [4, pp. 40]. Actually, Dan Barbilian collected in an
undated note, published in the cited collection of posthumuous works asever
jective properties of the nine-point circle and its connection with Euler’s lie
focused mainly on the projective properties, which represent, as weemnan
important part of the more complex phenomenon whose overall picture wedrie
present here.
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