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Gossard’s Perspector and Projective Consequences

Wladimir G. Boskoff, Laurenţiu Homentcovschi, and Bogdan D. Suceavă

Abstract. Considering as starting point a geometric configuration studied, among
others, by Gossard, we pursue the projective study of a triangle in the Euclidean
plane, its Euler line and its nine-point circle, and we relate Pappus’ Theorem to
the nine-point circle and Euler line.

1. Introduction

The relative position of Euler’s line with respect to the sides of a triangle has
raised the geometers’ interest since the very first paper on this topic, Leonhard
Euler’s classical work [10].

In 1997, problem A1 from the W. L. Putnam competition explored the case
when Euler’s line is parallel to one of the sides of a triangle.Amer. Math. Monthly
published Problem 10980 proposed by Ye Zhong Hao and Wu Wei Chao,whose
statement is the following.Consider four distinct straight lines in the same plane,
with the property that no two of them are parallel, no three are concurrent,and
no three form an equilateral triangle. Prove that, if one of the lines is parallelto
the Euler line of the triangle formed by the other three, then each of the four given
lines is parallel to the Euler line of the triangle formed by the other three.In the
Editorial Comment following the solution of problem 10980 (see vol. 111 (2004),
pp.824), the editors have pointed out the meaningful contributions to the history of
this problem, especially Gossard’s presentation at an A. M. S. conference in 1915.
A generalization from 1999, given by Paul Yiu, is mentioned in [13].

In the Bulletin of the A. M. S.from 1916, we find O. D. Kellogg’s report on
Gossard’s 1915 talk at the AMS Southwestern Section Conference (see[15]). As
far as we know, Gossard’s paper has not been published, although weknow from
the report what he proved and what methods he used. The summary, as published
by the Bulletin, is the following: ”Euler proved that orthocenter, circumcenter,
and centroid of a triangle are collinear, and the line through them has received the
name Euler line. He also proved that the Euler line of a given triangle together
with two of its sides forms a triangle whose Euler line is parallel with the third side
of the given triangle. By the use of vector coordinates or ordinary projective coor-
dinates, Professor Gossard proves the following theorem: the three Eulerlines of
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the triangles formed by the Euler line and the sides, taken by twos, of a given trian-
gle, form a triangle triply perspective with the given triangle and having the same
Euler line. The orthocenters, circumcenters and centroids of these two triangles
are symmetrically placed as to the center of perspective.”

Our goal in the present note goes beyond providing elementary proofs for these
facts, and aims to explore the deeper geometric meaning of a phenomenon seen in
the above mentioned results. Application 1 is Ye and Wu’s problem. Applications
3 and 4, proved below, are just particular cases of Application 1. Proposition 1 is
Gossard result from 1916, with a different proof. Furthermore, the original tools
in Gossard’s work were ordinary projective coordinates. That’s whytt would be
natural to explore from a projective viewpoint the geometric structure inspired by
Euler’s original contribution, which made the substance in Gossard’s work. In the
last part of our paper, we discuss the projective viewpoint on the relative position
of the Euler line and the three lines forming a given triangle. We will show how
Euler’s line can be regarded as the axis of a projectivity between two sidesof a
triangle. This result was also proved by D. Barbilian (see [4]), and it appears in
a note unpublished during Barbilian’s life. The result is presented below inour
Proposition 4. We have been able to reconstruct the context of Barbilian’s work
and we have obtained incidence results that complete the discussion on Ye and
Wu’s problem.

Finally, with Propositions 3 and 4, which as far as we know appear for the first
time here, we extend the projective analysis on this geometric structure (i.e., a
triangle, its Euler line and its nine-point circle) and will relate Pappus’ Theorem to
the nine-point circle and Euler line. We also study the parallelism of Euler’s line
with one of the sides of the triangle from the projective viewpoint. In conclusion,
one of the most important consequences of our investigation is that we are able
to better understand the geometric connections between Euler’s line and the nine-
point circle using projective methods. Our geometric motivation was the belief
that beyond the synthetic and analytic methods, one can fathom the entire depth
of a geometry problem by understanding the projective background of acertain
geometric structure.

2. Synthetic and analytic viewpoint

First, we prove a Lemma which will become our main tool of investigation. This
Lemma was inspired by Ye and Wu’s problem. Consider the Euclidean plane and
a Cartesian frame. LetA,B,C be three arbitrary points in the Eulcidean plane.

Lemma 1. Denote bymE the slope of Euler’s line in∆ABC and bym1,m2,m3

the slopes of the linesBC, AC, andAB, respectively. Then

mE = −
m1m2 +m3m1 +m2m3 + 3

m1 +m2 +m3 + 3m1m2m3

.

Proof. Measuring the slope of the angle betweenBC and the Euler’s line of∆ABC,

we have (see Figure 1):
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m1 −mE

1 +m1mE

= tan∠(HOS) =
HS

MN
=

AM −AH −ON

BN −BM

=
2R sinB sinC − 2R cosA−R cosA

R sinA− 2R sinC cosB

=
2 sinB sinC + 3 cos(B + C)

sin(B + C)− 2 sinC cosB

=
3 cosB cosC − sinB sinC

sinB cosC − sinC cosB

=
3− tanB tanC

tanB − tanC
.

Replacing in the last relation the following expressions

tanB =
m3 −m1

1 +m1m3

, tanC =
m1 −m2

1 +m1m2

,

we get the equality

m1 −mE

1 +m1mE

=
3− m3−m1

1+m1m3
· m1−m2

1+m1m2

m3−m1

1+m1m3
− m1−m2

1+m1m2

.

Cross-multiplying and collecting the like-terms, we obtain:

m1m2 +m1m3 +m1mE +m2m3 +m2mE +m3mE +3mEm1m2m3 +3 = 0.

Solving formE in this relation immediately yields the relation from the statement
of our lemma. �

We should remark here that any other relative positions of the pointsA, B, C
yield the same result. Now, we present several applications of this lemma.
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Application 1. (Problem 10980,American Mathematical Monthly, proposed by
Ye Zhong Hao and Wu Wei Chao, 109 (2002) 921, solution, 110 (2004)823–824.)
Consider four distinct straight lines in the same plane, with the property that no
two of them are parallel, no three are concurrent, and no three form an equilateral
triangle. Prove that, if one of the lines is parallel to the Euler line of the triangle
formed by the other three, then each of the four given lines is parallel to theEuler
line of the triangle formed by the other three.

Solution:Denote bym1,m2,m3, andm4 the slopes of the four linesd1, d2, d3, d4,
respectively. Suppose that Euler’s line of the triangle formed by the linesd1, d2, d3
is parallel tod4 and has slopemE . ThenmE = m4 and we get

m1m2 +m1m3 +m1m4 +m2m3 +m2m4 +m3m4 + 3m4m1m2m3 + 3 = 0.

This relation is symmetric in any one of the slopes and the conclusion follows
immediately. �

Application 2. Consider∆ABC and∆A′B′C ′ such that the measure of the ori-
ented angles between the straight linesAB andA′B′, AC andA′C ′, andBC and
B′C ′, respectively, are equal toα. Then the measure of the angle between Euler’s
line of∆ABC and Euler’s line of∆A′B′C ′ is alsoα.

Solution:We consider the following construction (see Figure 2). On the circum-
circle of ∆ABC, we consider the pointsA′′, B′′ andC ′′ such thatA′′B′′‖A′B′,

A′′C ′′‖A′C ′ andB′′C ′′‖B′C ′. More precisely, we chooseA′′ such that the angle
̂(AOA′′) is α.

A

B C

A′′

B′′

C′′

A′

B′

C′

O

Figure 2

Let us consider now the rotationRα
O of centerO (O is the circumcenter of

∆ABC) and oriented angleα. Thenm(∠(AB,A′′B′′)) = m(∠(AC,A′′C ′′)) =
m(∠(BC,B′′C ′′)) yieldsA′′ = Rα

O(A), B
′′ = Rα

O(B), C ′′ = Rα
O(C). We denote

by e, e′ ande′′ Euler’s lines of∆ABC, ∆A′B′C ′, and respectively∆A′′B′′C ′′.

Then∆A′′B′′C ′′ is obtained by rotating∆ABC aboutO by α. Thus, all the ele-
ments of∆ABC rotate aboutO. This meanse′′ = Rα

O(e), or m(∠(e, e′′)) = α.

Since the slopes satisfy the following equalitiesmA′′B′′ = mA′B′ , mA′′C′′ =
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mA′C′ , andmB′′C′′ = mB′C′ , thenme′′ = me′ ,which actually meansm(∠(e, e′)) =
α. �

Remark.Let∆ABC and∆A′B′C ′ be two triangles with the propertyAB⊥A′B′,

AC⊥A′C ′, BC⊥B′C ′. Then the Euler lines of the two triangles are perpendicular.
We can prove this Remark directly from Lemma 1. However, we can also pro-

vide a direct argument for its proof. Denote bym′

1,m
′

2,m
′

3 the slopes of the side
and bym′

E the slope of Euler’s line of∆A′B′C ′. Then

m′

E = −
m′

1m
′

2 +m′

3m
′

1 +m′

2m
′

3 + 3

m′

1
+m′

2
+m′

3
+ 3m′

1
m′

2
m′

3

= −

(
− 1

m1

)(
− 1

m2

)
+
(
− 1

m3

)(
− 1

m1

)
+
(
− 1

m2

)(
− 1

m3

)
+ 3

(
− 1

m1

)
+
(
− 1

m2

)
+
(
− 1

m3

)
+ 3

(
− 1

m1

)(
− 1

m2

)(
− 1

m3

)

=
m1 +m2 +m3 + 3m1m2m3

m1m2 +m3m1 +m2m3 + 3

= −
1

mE

.

This proves that the two lines are perpendicular.

Application 3. In the acute triangleABC, Euler’s line is parallel toBC if and only
if tanB tanC = 3.

Note: In [17], it is mentioned that this problem was proposed by Dan Brânzei.
We have discussed this application in [6]. The solution uses a direct trigonometric
argument. We present here the analytic argument based on Lemma 1.

Solution:Choose a coordinate system so that thex-axis is parallel toBC. If we
denote bym1 the slope of the straight lineBC, thenm1 = 0. Denotingm2,m3,me

the slopes of the straight linesAC, AB, and Euler’s linee, respectively, we get
from Lemma 1:

me = −
m2m3 + 3

m2 +m3

.

Thus, Euler’s linee of ∆ABC is parallel toBC if and only if me = 0, which
is equivalent tom2m3 = −3. Now we take into account thatm2 = − tanC and
m3 = tanB (or, depending on the position of∆ABC, we could havem2 = tanC
andm3 = − tanB). Consequently,tanB tanC = 3. �

For an interesting connection between the formula obtained here forme and
Tzitzeica surfaces, a topic studied in depth in affine differential geometry,see [2].
For a graphical study of Tzitzeica surfaces by using Mathematica, see [3]. For the
importance of Tzitzeica’s surfaces in the development of differential geometry at
the beginning of the 20th century, see [1].

Application 4. (W. L. Putnam Competition, 1997) A rectangle,HOMF, has sides
HO = 11 andOM = 5. A triangleABC hasH as the intersection of the altitudes,
O the center of the circumscribed circle,M the midpoint ofBC, andF the foot of
the altitude fromA. What is the length ofBC ?
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Solution: Since Euler’s line is parallel toBC, by the previous application, we
havetanB tanC = 3. This is just a consequence of the previous application. We
can continue our argument as in [14], pg.233, or [6]. ExpressingtanB andtanC
from trianglesABF andAFC, respectively, we get

ha

BF
·
ha

FC
= 3.

SinceHG‖BC, we haveha = AF = 3FH = 3 · 5 = 15. Therefore,BF · FC =
15·15

3
= 75.Namely, we expressBC2 = (BF+FC)2 = (FC−BF )2+4BF ·FC.

To compute the first term in the last expression we writeFC−BF = FM+MC−
(BM − FM) = 2FM = 2OH = 22. Therefore,BC2 = 222 + 4 · 75 = 784,
thusBC = 28. �

Lemma 2. Euler’s line of∆ABC intersects the linesAB andAC in M , respec-
tivelyN. Then Euler’s line of∆AMN is parallel toBC.

e

e′

M

N

A

B C

O

H

Figure 3

Proof. Choose a coordinate system so that thex-axis is parallel toBC, as in Ap-
plication 3 (see Figure 3). If we denote bym1 the slope of the straight lineBC,

thenm1 = 0. Denotingm2,m3,me the slopes of the straight linesAC, AB, and
respectively Euler’s linee. By Lemma 1:

me = −
m2m3 + 3

m2 +m3

,

and the slope of Euler’s line of∆AMN is

me′ = −
mem2 +mem3 +m2m3 + 3

me +m2 +m3 + 3mem2m3

.
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In fact, the numerator of the last expression is

mem2 +mem3 +m2m3 + 3

= me(m2 +m3) +m2m3 + 3

=

(
−
m2m3 + 3

m2 +m3

)
(m2 +m3) +m2m3 + 3 = 0.

In fact, we proved thatme′ = 0, which means thate′‖BC. �

Application 5. Consider two triangles such that∆ABC ≡ ∆A′B′C ′ and they
have the same Euler’s line. Then∆A′B′C ′ is obtained from∆ABC either by a
translation, or by a central symmetry. �

Example 1.Problem 244 in [19] states the following. LetH be the orthocenter
of ∆ABC, andOa, Ob, Oc the circumcenters of trianglesBHC,CHA,AHB.

Then∆ABC ≡ ∆OaObOc have the same nine-point circle and the same Euler’s
line. This provides us an example of two triangles that have the same Euler’s line
(see Figure 4).

O

A

B C

Oc

Oa

Ob

A1

B1

C1

H

O9

Figure 4.

Example 2.Now we describe two triangles of interest that have the same Euler’s
line. Consider∆ABC and its circumcircleC. Consider also the incircle tangent to
BC,AC andAB respectively inD,E, andF. On the straight linesAI,BI, CI we
consider the excenters (i.e., the centers of the excircles)Ia, Ib, andIc. Remark that
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the circumcircle of∆ABC is the nine-point circle of∆IaIbIc, becauseA,B,C

are the feet of the altitudes (e.g.AIa⊥IbIc).

I

D

E

F

A

B C

Ia

Ib

Ic

Figure 5.

Thus,I is the orthocenter in∆IaIbIc, andO is the center of the nine-point circle
in ∆IaIbIc. Therefore,OI is Euler’s line in∆IaIbIC . Remark that∆DEF and
∆IaIbIc have parallel sides. Therefore their Euler’s lines must be parallel (we may
say that this is a consequence of Application 2). But the circumcenter of∆DEF

is the pointI. This means that the Euler’s line of∆DEF passes throughI and,
being parallel toOI, must beOI. �

3. Gossard’s perspector

In this section we present an elementary proof of Gossard’s result citedin [15].

Proposition 3 (Gossard, [15]). Denote bye the Euler line of an arbitrary∆ABC

in the Euclidean plane. Suppose thate intersectsBC,AB,AC in M,N, and re-
spectivelyP. Denote bye1, e2, e3 Euler’s lines of∆ANP,∆BMN, and∆CPM,

respectively. DenoteA′, B′, C ′ the intersection of the following pair of lines:
e2∩e3, e1∩e3, ande1∩e2, respectively. Then∆A′B′C ′ ≡ ∆ABC, and∆A′B′C ′

has the same Euler linee, and there exists a pointIG (called Gossard’s perspec-
tor) on the linee such that∆A′B′C ′ is the symmetric of∆ABC by the symmetry
centered inIG.

The proof presented below is based on Lemma 1. Thus, we claim that it may
be more elementary than Gossard’s original proof, as it is presented by Kellogg in
[15]. An important r̂ole in the proof is played by the conditionse1‖BC, e2‖AC,
e3‖AB.
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Proof. We choose coordinate axis such that the vertices of∆ABC have the co-
ordinatesA(0, 1), B(b, 0), C(c, 0) (see Figure 4). LetG be the gravity center of
∆ABC; thenG( b+c

3
, 1
3
). The slope of Euler’s line in∆ABC is given by

me = −
m2m3 + 3

m2 +m3

= −

(
−1

c

) (
−1

b

)
+ 3

−1

c
− 1

b

=
3bc+ 1

b+ c
.

Thus, the equation of Euler’s line isy = 3bc+1

b+c
x−bc. The coordinates of the points

M,N, andP are:

M

(
bc(b+ c)

3bc+ 1
, 0

)
,

N

(
b(b+ c)(bc+ 1)

3b2c+ 2b+ c
,
2b2c− bc2 + b

3b2c+ 2b+ c

)
,

P

(
c(b+ c)(bc+ 1)

3bc2 + 2c+ b
,
2bc2 − b2c+ c

3bc2 + 2c+ b

)
.

The linee1 passes through the center of gravity of∆ANP and is parallel toBC,

therefore it has the equation

(e1) : y =
yN + yP + yA

3
.

At the intersection of linese ande1 we have the pointQ whose coordinates are

Q

(
b+ c

3bc+ 1
·
1

3
(E + 3bc),

1

3
E

)
,
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where we have denoted by

E =
2b2c− bc2 + b

3b2c+ 2b+ c
+

2bc2 − b2c+ c

3bc2 + 2c+ b
+ 1.

The center of gravity of∆BMN, denotedR, has the coordinates

(xR, yR) =

(
1

3

(
bc(b+ c)

3bc+ 1
+ b+

b(b+ c)(bc+ 1)

3b2c+ 2b+ c

)
,
1

3
·
2b2c− bc2 + b

3b2c+ 2b+ c

)
.

Euler’s line in∆BMN passes throughR and is parallel toAC, thus it has the
equation

(e2) : y − yR = −
1

c
(x− xR).

Denote byS the intersection of the linese ande2. We get

yS =
(3bc+ 1)(xR + cyR)− bc(b+ c)

3bc2 + 2c+ b
.

To emphasize the transformation by symmetry (as described in [15]), we claimthat
yS + yp = yQ + yM . This is equivalent to

(3bc+ 1)(xR + cyR)− bc(b+ c)

3bc2 + 2c+ b
+

2bc2 − b2c+ c

3bc2 + 2c+ b

=
1

3

(
2b2c− bc2 + b

3b2c+ 2b+ c
+

2bc2 − b2c+ c

3bc2 + 2c+ b
+ 1

)
.

By replacingxR andyR and simplifying the relation, we obtain the desired equal-
ity. Therefore, the segments[PS] and [QM ] have the same midpoint. (It is not
necessary to check also thatxP + xS = xQ + xM , sinceP, S,Q andM are
collinear.)

Denote byIG the common midpoint of those two segments. As above, one can
prove thatIG is the midpoint of the segment[NT ], where{T} = e3 ∩ e. The
analogy of the computation can be further seen since the coordinates ofIG are
symmetric inb andc. Thus, with the above notation forE, IG has the coordinates

(xIG , yIG) =

(
=

1

2

(
bc(b+ c)

3bc+ 1
+

b+ c

3bc+ 1
·
1

3
(E + 3bc)

)
,
1

6
E

)
.

We can write the coordinates in the form

IG

(
1

6
·

b+ c

3bc+ 1
(E + 6bc),

1

6
E

)
.

This is the point calledthe Gossard perspector.DenoteSIG the symmetry of center
IG in the Euclidean plane. Sincee1‖BC, Q ∈ e1 M ∈ BC, andIG is the midpoint
of [QM ], we havee1 = SIG(BC). Similarly e2 = SIG(AC), e3 = SIG(AB).

Then, we have obtained the following:

{A′} = e2 ∩ e3 = SIG(AC) ∩ SIG(AB) = SIG(AC ∩AB) = SIG({A}).

Similarly, {B′} = SIG({B}), and{C ′} = SIG(C).
Consequently,∆A′B′C ′ ≡ ∆ABC, and∆A′B′C ′ = SIG(∆ABC).
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DenotingG and G′ the gravity centers of∆ABC and ∆A′B′C ′, we have
{G′} = SIG({G}). For the orthocenters we get a similar correspondence:{H ′} =
SIG({H}). Thus,e′ = SIG(e), wheree′ is Euler’s line of∆A′B′C ′. But IG ∈
e. Thus, Euler’s linee passes through the center of symmetry. We deduce that
SIG(e) = e, or e′ = e. Finally, we proved that∆ABC and∆A′B′C ′ have the
same Euler’s line. This completes the analytic proof of Gossard’s prospector theo-
rem, as mentioned in our introduction (see [15]). �

Example 3. We have seen in Example 1 (see [19], 244) that ifH is the or-
thocenter of∆ABC, andOa, Ob, Oc are the circumcenters of trianglesBHC,
CHA, AHB, then∆ABC and∆OaObOc have the same Euler’s line (see Figure
4). In fact,Oa, Ob, andOc are the symmetric points ofO with respect to the sides
BC,AC and, respectively,AB. Denote byA1, B1, andC1 the midpoints of the
sidesBC, AC and, respectively,AB.

ThenH is the circumcenter of∆OaObOc. Actually, ∆OaObOc is the homo-
thetic of∆A1B1C1 by homothety of centerO and ratio 2. Thus,∆OaObOc has the
sides parallel and congruent to the sides of∆ABC, and, furthermore,OOa⊥BC,
and alsoOOa⊥ObOc, (and the similar relations). This proves thatO is the ortho-
center of∆OaObOc. Therefore∆ABC and̂∆OaObOc interchanged among them
the orthocenters and the circumcenters. This is the argument to see that the Euler’s
lines in the two triangles are the same and the two triangles have the same cen-
ter of the nine-point circle, sinceO9 is the midpoint ofOH. Further,∆ABC and
∆OaObOc are symmetric with respect toO9. Therefore, Gossard’s perspector in
∆OaObOc is the symmetric of Gossard perspector in∆ABC with respect toO9,

the center of the nine-point circle.

4. Projective viewpoint

Consider now a projectivityf : d1 → d2. (See also [7, pp.39 ff], [8, pp.9-11])
The geometric locus of the points from which the the projectivity is seen as an
involution of pencils of lines is called axis of the projectivity.

N1

N2

M1

M2

Figure 7.

More precisely (see Figure 7), any projectivity relating ranges on two distinct
lines determines another special line, the axis of projectivity, which containsthe
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intersection of the cross-joints of any pairs of corresponding points (see[8, pp.36-
37]). This result is known asthe axis theorem.To illustrate it, ifM1 → N1 and
M2 → N2, then the point{P} = M1N2∩M2N1 lies on the axis of the projectivity,
since we have the mappingr1 = PM1 → PN1 = r2 andr2 = PM2 → PN1 =
r1. Thus,r1 → r2 andr2 → r1, which means that the projectivityf : d1 → d2 is
seen as an involution. As a consequence, we remind here the well-known geometric
structure calledPappus’ line.

A′

B′

C′

A

B

C

M N P

Figure 8.

Let A,B,C ∈ d1 andA′, B′, C ′ ∈ d2. Then the points{M} = AB′ ∩ BA′,

{N} = AC ′ ∩AC ′ ∩ CA′, {P} = BC ′ ∩ CB′, are collinear (see Figure 8). This
result can be viewed as an immediate consequence of the axis theorem. Indeed,
consider the projectivityf : d1 → d2 uniquely determined byA → A′, B → B′,

C → C ′. By the axis theorem, we get immediately that the points{M} = AB′ ∩
BA′, {N} = AC ′ ∩ AC ′ ∩ CA′, {P} = BC ′ ∩ CB′ are collinear. With this
preparation, we are able to show thatthe Euler’s line of a triangleABC can be
regarded as the axis of projectivity for three suitable projectivities between the
sides of∆ABC (see Figure 9).

A1 A′

A

B C

O

H

G

B′

B1

Figure 9.
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Denote byA′, B′, C ′ the midpoints of the sidesBC, AC, and respectivelyAB.

Denote byA1, B1, C1 the feet of altitudes fromA,B,C. We use the standard no-
tations forO, the circumcircle,G the center of gravity, andH the orthocenter of
∆ABC. There are three projectivities, each one between two sides of∆ABC. One
of them isfC : BC → AC, the projectivity determined byB → A, A1 → B1,

A′ → B′. SinceH andG appear as cross-joints points, they lie on the axis of pro-
jectivity of fC . Specifically,{H} = AA1 ∩ BB1, {G} = BB′ ∩ AA′. Since two
points determine uniquely a line, and sinceG andH determine Euler’s line, this
means thatthe Euler’s line is identified with the axis of projectivityfC . Further-
more, on the Euler’s line we get a new point:{ΩAB} = A1B

′∩A′B1. We can also
emphasize the pair of homologous points that determineO, the circumcenter, in
this projectivity. Extend the line determined by the vertexA and byO and denote
{X} = AO∩BC. Similarly, {Y } = BO∩AC. Since in our projectivityB → A,

thenX → Y. Thus, on the axis of projectivity we obtain{O} = AX ∩BY.

Considering similar constructions for the projectivitiesfA andfB, we obtain the
following fact.

Proposition 4 (Barbilian [4]). In ∆ABC, let A′, B′, C ′ be the midpoints of the
sidesBC, AC, and respectivelyAB. Denote byA1, B1, C1 the feet of altitudes
fromA,B,C. Then the points{ΩAB} = A1B

′ ∩ A′B1, {ΩCB} = C1B
′ ∩ C ′B1,

{ΩAC} = A1C
′ ∩A′C1 are collinear and they lie on Euler’s line of∆ABC.

A1 A′

A

B C

O

H

G

B′

B1

T

Figure 10.

In the first part, we have presented Applications 3 and 4, where we givesyn-
thetic and trigonometric characterizations of the fact that Euler’s line is parallel
to a side of the triangle. We study here the following question: What is projec-
tive condition that the projectivityfC : BC → AC must satisfy such that Euler’s
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line is parallel toBC? Denote by(e) Euler’s line in∆ABC. (See Figure 10.) Let
{T} = AC∩(e), {U} = BC∩(e). We need to determine the pairs of straight lines
that characterize in a projectivity the pointsT andU. Recall that the projectivity
fC has as homologous pointsB → A. To getT , consider the pairC → (e) ∩AC.

Similarly, we getU by the pair(e) ∩ BC → C. Therefore we have obtained the
projective characterization of the fact that the Euler line is parallel to a sideof the
triangle. Thus, we are able to state the projective counterpart of Application 3,
which is the trigonometric characterization of this parallelism.

Proposition 5. In ∆ABC, let (e) be the Euler’s line. The sufficient condition that
(e)‖BC, is that the projectivityfC has∞ → C as pair of homologous points. Sim-
ilarly, to have(e)‖AC, it is sufficient thatfC hasC → ∞ as pairs of homologous
points.

Four our next step, we need to recall here Pappus’ Theorem on the circle. Let
A,B,C andA′, B′, C ′ six points on the circleC. Then the intersection points
AB′ ∩ A′B, AC ′ ∩ A′C andBC ′ ∩ B′C are collinear. To recall the idea of the
most direct proof, consider the projectivityf : C → C uniquely determined by
A → A′, B → B′, C → C ′. Then, the intersection points mentioned in the
statement lie precisely on the axis of the projectivity. With this observation, we
obtain that Euler’s line is the axis of projectivity of a certain projectivity within the
nine-point circle. The result is the following.

Proposition 6. ConsiderA′, B′, C ′ the midpoints of the sidesBC,AC and re-
spectivelyAB. Let A1, B1 andC1 the feet of the altitudes. Consider the projec-
tivity φ uniquely determined byA1 → B1, A

′ → B′, B2 → A2. Then the points
A1A2 ∩ B1B2 = {H} (the orthocenter of∆ABC), A1B

′ ∩ A′B1 = {ΩAB} and
A′A2∩B′B2 = {O9} (the center of the nine-point circle) are collinear on the axis
of projectivity ofφ.
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Figure 11.
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The proof is just a direct application of Pappus’ Theorem on the circle, for the
geometric structure described in the statement. SinceH andΩAB are on Euler’s
line, the axis of projectivity and Euler’s line must be the same straight line. As a
consequence, the third point,O9, the center of the nine-point circle, must be on the
axis of projectivity, thus on Euler’s line.

Proposition 4 appears in [4, pp. 40]. Actually, Dan Barbilian collected in an
undated note, published in the cited collection of posthumuous works, several pro-
jective properties of the nine-point circle and its connection with Euler’s line. He
focused mainly on the projective properties, which represent, as we cansee, an
important part of the more complex phenomenon whose overall picture we tried to
present here.
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