Nikolaos Dergiades, Generalized Tucker circles,
Forum Geometricorum, 15 (2015) 1--4.

Abstract. It is known that if we cut the sides of the angles of a triangle, with six consecutive alternating antipallel and parallel segments to the sides of the triangle then we get a closed hexagram that is inscribed in a circle, the Tucker circle. Since the above hexagram has sides parallel to the sides of the pedal triangles of O and H that are isogonal conjugate points, we generalize the Tucker circles by considering two isogonal conjugate points on the McCay cubic.

[ps file] [pdf]

Return to Forum Geom., 15 (2015) Table of Contents