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A Special Case of Poncelet’s Problem

Arthur Holshouser, Stanislav Molchanov, and Harold Reiter

Abstract. A special case of Poncelet’s Theorem states that if circle C2 lies in-
side of circle C1 and if a convex n-polygon, n ≥ 3, or an n-star, n ≥ 5, is
inscribed in C1 and circumscribed about C2, then there exists a family of such
n-polygons and n-stars. Suppose C2 lies inside of C1 and R, r, are the radii
of C1, C2 respectively and ρ is the distance between the centers of C1, C2. For
n ≥ 3 we give an algorithm that computes the necessary and sufficient condi-
tions on R, r, ρ, where R > r + |ρ| , r > 0, so that if we start at any arbitrary
point P on C1 and draw successive tangents to C2 (counterclockwise about the
center of C2) then we will return to P in exactly n-steps and not return to P in
fewer than n-steps. This will create the above family of n-polygons and n-stars.
The algorithm uses nothing but rational operations. At the end we illustrate this
rational algorithm for n = 3, 4, 5, 6, 7 and we will then see an invariant begin to
emerge.

1. Introduction

Jean-Victor Poncelet (born July 1, 1788, Metz, France; died December 22, 1867,
Paris) was a French mathematician and engineer who was one of the founders of
modern projective geometry. As a lieutenant of engineers in 1812, he took part in
Napoleon’s Russian campaign, in which he was abandoned as dead at Krasnoy and
imprisoned at Saratov; he returned to France in 1814. During his imprisonment
Poncelet studied projective geometry and wrote Applications ...

A special case of Poncelet’s Theorem states that if all points on circle C2 lie
inside of circle C1 and if a convex n-polygon, n ≥ 3, is inscribed in C1 and
circumscribed about C2 then there exists a family of such n-polygons. The same
thing is true when an n-star, n ≥ 5, is inscribed in C1 and circumscribed about
C2 and the n-star goes around the center of C2 exactly two times or exactly three
times or exactly four times, etc. Each member of the family can be constructed
by starting at any arbitrary point P on C1 and drawing successive tangents to C2

(counterclockwise to the center of C2) until after exactly n steps and no fewer than
n steps were turn to P .

If R, r are the radii of C1, C2 respectively and ρ is the distance between the cen-
ters, where R > r+|ρ| , r > 0, then Poncelet’s Theorem and physical reasoning in-
dicates that if R, ρ,R > |ρ| ≥ 0, are fixed, then r must be the same and unique for
all n-polygons, n ≥ 3, of our family and for all n-stars, n ≥ 5, of our family that go
around the center of C2 exactly two times, that go around the center of C2 exactly
three times, etc. With R > |ρ| ≥ 0 being fixed and r being a variable, we develop a
rational algorithm for computing this relation between R, r, ρ,R > r+ |ρ| , r > 0,
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Figure 1. A family of quadrilaterals

for all n ≥ 3. We do this by studying a very special case for C1, C2, P . We assume
that C2 lies inside of C1 and we define C2 : x

2+y2 = r2, C1 : (x− ρ)2+y2 = R2.
We also assume that R, ρ are fixed where 0 ≤ |ρ| < R. Then we compute the nec-
essary and sufficient conditions on R, r, ρ where R > r + |ρ| , r > 0, so that if we

start at (x0, y0) = (r,−y1) =

(
r,−

√
R2 − (r − ρ)2

)
and draw tangents succes-

sively to C2 (counterclockwise about the origin (0, 0)) then in exactly n ≥ 3 steps
and not in fewer than n steps we will return to (x0, y0) = (r,−y1) .

By Poncelet’s Theorem these conditions are also necessary and sufficient so that
if we use any arbitrary point P on C1 in the place of (x0, y0) = (r,−y1) and use
the same construction of tangents to C2 (counterclockwise about (0, 0)) then we
will return to P in exactly n-steps and never return to P in fewer than n-steps.
Of course, for each fixed n ≥ 3, this algorithm is dealing with the n-polygons
and the n-stars together to generate one equation P ∗

n (R, r, ρ) = 0 where P ∗
n is

a polynomial. However, for each fixed n ≥ 3, if R, ρ,R > |ρ| ≥ 0, are fixed
and r is a variable and if the positive real r-roots of P ∗

n (R, r, ρ) = 0 that satisfy
0 < r < R − |ρ| are 0 < r1 < r2 < · · · < rk < R − |ρ| then rk is the radius of
C2 so that we get an n-polygon that goes around (0, 0) exactly one time, rk−1 is
the radius of C2 so that we get an n-star that goes around (0, 0) exactly two times,
rk−2 is the radius of C2 so that we get an n-star that goes around (0, 0) exactly
three times, etc. (Important: see Section 3 for a slight correction to this statement.)
We call the n-polygons, n ≥ 3 and the n-stars, n ≥ 5, that we generate Poncelet
n-polygons and Poncelet n-stars. They can also be called the standard n-gons and
the standard n-stars. It may be true that P ∗

n (R, r, ρ) = 0 has extraneous roots ri
that lie outside of R > ri + |ρ| , ri > 0. Also, P ∗

n (R, r, ρ) = 0 might repeat
some of the roots ri. But we can eliminate this multiplicity by agreeing to write
P ∗
n (R, r, ρ) = 0 in the canonical form of Comment 1.
Suppose n ≥ 3 is fixed. In Section 3 we study exactly how many n-stars can

exist and exactly how many times each n-star goes around (0, 0). The above list
0 < r1 < r2 < · · · < rk, R > ri + |ρ| , ri > 0, will include exactly one ri for
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each n-star that can exist. We can see this fact intuitively by letting R > |ρ| ≥ 0
be fixed and then letting r slowly decrease from r = R−|ρ| to r = 0 and studying
the action by using physical reasoning.

2. Initial concepts

We first discuss what we mean by an n-star in this note. Suppose we draw a regu-
lar n-gon where n ≥ 5 and number the vertices 1, 2, 3, · · · , n in counterclockwise
order. For each k ∈ {

1, 2, · · · , �n2 �
}

if (n, k) are relatively prime let us start at
vertex 1 and draw lines connecting (1, 1 + k), (1 + k, 1 + 2k), (1 + 2k, 1 + 3k),
(1 + 3k, 1 + 4k), . . . , where the calculations use modulo n arithmetic. Since (n, k)
are relatively prime, we will return to vertex 1 in exactly n-steps and in no fewer
than n-steps. In doing this we create an n-star that goes around the center of the
n-gon exactly k times. Thus, for the 7-gon we can create 7-stars that go around the
center k = 1, k = 2 or k = 3 times where we consider the 7-gon itself as a star.
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Figure 2a. n = 7, k = 3
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Figure 2b. n = 8, k = 3

For the 8-gon we can create 8-stars that go around the center k = 1 or k = 3
times where we consider the 8-gon itself as a star.

Note 1. In this entire note, it is convenient to think of R, ρ,R > |ρ| ≥ 0, as
constants and r, where R > r+ |ρ| , r > 0, as a variable. By doing this we can use
single variable algebra and single variable calculus.

Algorithm 1. Suppose P (R, r, ρ) = 0, Q (R, r, ρ) = 0 are two polynomial equa-
tions (where r is the variable) and we wish to eliminate all r-variable traces of
P (R, r, ρ) = 0 that are embedded in Q (R, r, ρ) = 0 and leave the rest. The
following algorithm does this and it also explains exactly what we mean. (In Com-
ment 1 we mention possible overkill.)

(1) First, compute Q1 = gcd (P,Q) and write Q = Q1 ·Q′ where gcd denotes
greatest common divisor and Q1 is a polynomial in R, r, ρ. All calculations
consider r the variable.
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(2) Next, compute Q2 = gcd (P,Q′) where Q2 is a polynomial in R, r, ρ and
write Q

′
= Q2 ·Q′′ so that Q = Q1Q2Q

′′.
(3) Next, compute Q3 = gcd

(
P,Q

′′
)

where Q3 is a polynomial and write

Q′′ = Q3 ·Q′′′
so that Q = Q1Q2Q3Q

′′′
.

...
(n) Last, compute Qn = gcd

(
P,Q(n−1)

)
where Qn is a polynomial and write

Q(n−1) = Qn ·Q(n) so that Q = Q1· Q2 · · ·Qn ·Q(n). Suppose now that
gcd

(
P,Q(n)

)
= 1. That is, P,Q(n) are relatively prime in the variable r.

We now define Q(n) to be the part (or divisor) of Q that remains after we
eliminate all traces of P in the variable r that are embedded in Q.

Since we will always be writing the equation Q(n) = 0, we can also
write Q(n) as a polynomial in all of the variables R, r, ρ.

If we wish to eliminate all r-variable traces of several polynomials

P1 (R, r, ρ) = 0, P2 (R, r, ρ) = 0, · · · , Pk (R, r, ρ) = 0

that are embedded in polynomial Q (R, r, ρ) = 0 and leave the rest we first use
the above algorithm with (P1, Q). Let Q∗ be the divisor of Q that remains after all
r-traces of P1 have been eliminated from Q.

We next use the algorithm with (P2, Q
∗), and let Q∗∗ be the divisor of Q∗ that

remains after all r-traces of P2 have been removed from Q∗. Then we use the
algorithm with (P3, Q

∗∗) and let Q∗∗∗ be the divisor of Q∗∗ that remains after all
r-traces of P3 have been eliminated from Q∗∗ .

We continue the algorithm with each P1, P2 · · ·Pk until we end up with Q∗∗∗···∗
where Q∗∗∗···∗ is the divisor of Q that remains after all r-traces of P1, P2, · · · , Pk

have been eliminated from Q.

Comment 1. In applying this algorithm to the problems in this note, from our ex-
perience we believe that to eliminate all r-traces of a polynomial P (R, r, ρ) = 0

from a polynomial Q (R, r, ρ) = 0, then all we have to do is divide Q(R,r,ρ)
P (R,r,ρ) =

Q′ = Q(n) one time and Q′ = Q(n) will automatically be the answer that we
are seeking. However, only more practice will tell us whether this is always true
or not. As always, we let R, ρ be fixed and r be a variable. Suppose a polyno-
mial P (R, r, ρ) = 0 in the rational field is factored P (R, r, ρ) = P k1

1 (R, r, ρ) ·
P k2
2 (R, r, ρ) · · ·P kn

n (R, r, ρ) where P1, P2, · · ·Pn are distinct polynomials (in the
rational field) in the variable r that are each irreducible in the rational field. Then by

algebra and calculus we can compute a polynomial P (R, r, a) =
P (R, r, ρ)

gcd (DrP, P )
=

P1 (R, r, ρ) · P2 (R, r, ρ) · · ·Pn (R, r, ρ). Dr is the r-variable derivative. We call
P (R, r, ρ) the canonical form of P (R, r, ρ). This polynomial P (R, r, ρ) = 0 will
contain the exact same r-root information as P (R, r, ρ) = 0 since they have the
same r-roots but P (R, r, ρ) does not repeat the r-roots. P (R, r, ρ) is all that we
need. We do not have to compute P1, P2, . . . , Pk.
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If we agree to write all of our polynomials in this canonical form P (R, r, ρ),
then in this note it becomes much more likely that Algorithm 1 can be carried out
by the above single division Q(R,r,ρ)

P (R,r,ρ) = Q′ = Q(n). In any case, if we write all of
our polynomials in the above canonical form, Algorithm 1 can always be carried
out in just one single step.

3. Analytic machinery

As always, in this note C2 : x2 + y2 = r2, C1 : (x− ρ)2 + y2 = R2 are
the standard definitions of two circles and C2 lies inside of C1. That is, R >
r + |ρ| , r > 0. The origin (0, 0) is the center of C2 and (ρ, 0) is the center of C1.

mn+1

mn

(ρ, 0)(0, 0)

(R + ρ, 0)

(−R + ρ, 0)

(xn, yn,mn)

(xn+1, yn+1,mn+1)

(xn−1, yn−1,mn−1)

C1 : (x − ρ)2 + y2 = R2

C2 : x2 + y2 = r2

Figure 3. A family of quadrilaterals

In Figure 3 and throughout this paper, the reader may prefer to let ρ ≥ 0. Sup-
pose (xn−1, yn−1,mn−1) , (xn, yn,mn) , (xn+1, yn+1,mn+1) are drawn in Fig. 3,
and suppose that (xn−1, yn−1) , (xn, yn) , (xn+1, yn+1) are successive points on
circle C1 and the tangent lines to circle C2 in Fig. 3 are oriented counterclock-
wise about the origin (0, 0) as indicated by the arrows. Also, mn,mn+1, · · ·
are the reciprocals of the slopes of the tangent lines in Fig. 3. That is, mn =
xn−xn−1

yn−yn−1
,mn+1 =

xn+1−xn

yn+1−yn
, · · · .

For each successive n, n + 1, the line between (xn, yn) and (xn+1, yn+1) can
be defined parametrically by the equation (x, y) = (xn +mn+1t, yn + t) where
t ∈ R is the parameter.

Using the elementary analytic geometry of the circle, we can easily derive the
following recursive equations (xn, yn,mn) → (xn+1, yn+1,mn+1) for a given
starting point (x0, y0,m0).

(1) mn+1 =
2xnyn
y2n − r2

−mn.
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(2) xn+1 =
(−xn + 2ρ)m2

n+1 − 2ynmn+1 + xn

m2
n+1 + 1

.

(3) yn+1 =
ynm

2
n+1 − 2 (xn − ρ)mn+1 − yn

m2
n+1 + 1

.

4. A special case of the recursion

As stated previously, this standard special case if the case that we always deal

with in this note. Suppose we define (x0, y0,m0) =

(
r,−

√
R2 − (r − ρ)2,m0

)

and (x1, y1,m1) =

(
r,
√
R2 − (r − ρ)2, 0

)
where the line between (x0, y0),

(x1, y1) is a vertical tangent to circle C2.
We note that x1 = r is a rational function of r. Also, we note that y1 is an

irrational function of R, r, ρ but y21 is a rational function of R, r, ρ.
By studying the recursive equations of Section 3, we easily see by using in-

duction that we can write (xn, yn,mn) = (xn, Yn · y1,Mn · y1) where xn, Yn,Mn

are rational functions of R, r, ρ and y1 = +
√
R2 − (r − ρ)2. Since y21 = R2 −

(r − ρ)2 is a rational function of R, r, ρ, it follows by induction from (xn, yn,mn) =
(xn, Yn · y1,Mn · y1) and from the recursive equations of Section 3 that

(xn+1, yn+1,mn+1) = (xn+1, Yn+1 · y1,Mn+1 · y1)
where xn+1, Yn+1,Mn+1 are rational functions of R, r, ρ.

If (x0, y0,m0) =

(
r,−

√
R2 − (r − ρ)2,m0

)

and (x1, y1,m1) =

(
r,+

√
R2 − (r − ρ)2, 0

)
, we see that the recursive equa-

tions (1), (2) (3) of Section 3 can now be written for xn, Yn,Mn as the following
recursion where, of course,

(xn, yn,mn) = (xn, Yn · y1,Mn · y1) ,
(xn+1, yn+1,mn+1) = (xn+1, Yn+1 · y1,Mn+1 · y1) ,

and where we use y21 = R2 − (r − ρ)2 and R > r + |ρ| , r > 0.

(1) (x1, Y1,M1) = (r, 1, 0)

(2) Mn+1 =
2xnYn

Y 2
n · y21 − r2

−Mn.

(3) xn+1 =
(−xn + 2ρ)M2

n+1 · y21 − 2YnMn+1 · y21 + xn

M2
n+1 · y21 + 1

.

(4) Yn+1 =
YnM

2
n+1 · y21 − 2 (xn − ρ)Mn+1 − Yn

M2
n+1 · y21 + 1

.

In these equations, we let R, ρ be constants and let r be the variable. We can
even let R = 1. There is also no loss of generality if we assume ρ ≥ 0.
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The computer programs run more efficiently if we deal exclusively with poly-
nomials. Therefore, let us write Mn = Mn

Mn
, xn = xn

xn
, Yn = Yn

xn
where we have the

five polynomials, xn, xn, Yn,Mn,Mn.
We now have x1 = r, x1 = 1, Y1 = 1,M1 = 0,M1 = 1, y21 = R2 − (r − ρ)2.
The recursions are as follows.

(1) Mn+1 = 2xnYnMn − Y 2
nMny

2
1 + r2x2nMn.

(1′) Mn+1 = Y 2
nMny

2
1 − r2x2nMn.

(2) xn+1 = (−xn + 2ρxn)M
2
n+1y

2
1 − 2YnMn+1Mn+1y

2
1 + xnM

2
n+1.

(2′) xn+1 = xnM
2
n+1y

2
1 + xnM

2
n+1.

(3) Yn+1 = YnM
2
n+1y

2
1 − 2 (xn − ρxn)Mn+1Mn+1 − YnM

2
n+1.

We can easily prove by induction that for all n ≥ 1 and for all real R, r, ρ we
have xn > 0, xn+1 > 0.

Therefore, we never have to worry about xn
xn

, Yn
xn

having a common r-root in the
range R > r + |ρ| , r > 0.

However, to be on the safe side we need to compute the gcd
(
Mn,Mn

)
and

throw this gcd away, in the numerator and denominator of Mn

Mn
.

In this note, we always deal with the fraction form of the recursion and not the
polynomial form.

In both the fraction and polynomial forms of the recursion, it appears that the re-
cursive equations will quickly become intractable. However, from our experience,
these recursive equations will massively simplify proportional to the expansion. So
they remain tractable. This phenomenon is far from random.

Comment 2. It is probably true by induction that for all n ∈ {0, 1, 2, 3, · · · },
y21 = (R− r + ρ) (R+ r − ρ) divides (xn − r).

To see this we see that x0 = x1 = r and y21| (x0 − r) and y21| (x1 − r). From

the fraction form of the recursion for xn+1 we see that xn+1 − r =
( )y21+(xn−r)

M2
n+1y

2
1+1

and from this we see that it is probably true that y21| (xn+1 − r) since y21|y21 and
y21| (xn − r).

By the same reasoning it is also probably true by induction that r |xn and r|Mn

for all n ∈ {1, 2, 3, · · · }. To see this we see that r |x1, r|M1 since x1 = r,M1 = 0.
From the recursion for xn+1,Mn+1, we see that it is probably true that r|xn+1,

r|Mn+1 for all n ∈ {1, 2, 3, · · · }.

5. Main Problem 1 and Problems 1, 1′, 2

Main Problem 1. Suppose n ≥ 3 is fixed. Using the standard example that we
defined in Section 4, where R, ρ satisfying R > |ρ| ≥ 0, are fixed, we wish to com-
pute the necessary and sufficient conditions P ∗

n (R, r, ρ) = 0, R > r + |ρ| , r > 0,
where r is considered to be the only variable and where P ∗

n (R, r, ρ) is a poly-
nomial in R, r, ρ, so that if we start at the standard point (x0, y0) = (r,−y1) =(
r,−

√
R2 − (r − ρ)2

)
on C1 and draw successive tangents to C2 that are ori-

ented counterclockwise about (0, 0) then we will return to (x0, y0) in exactly n
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steps and also such that we pass through (x0, y0) just one time in n steps. (In this
paper, when we say that we arrive at or return to (x0, y0) in exactly n steps this
always means that we arrive at or return to (x0, y0) at the end of exactly n steps.)

Note 2. We will call this P ∗
n (R, r, ρ) = 0, where R > r + |ρ| , r > 0 the stan-

dard equation or the Poncelet equation. As always, starting at (x0, y0), we call
the above construction of tangents to C2 the standard construction and we call

(x0, y0) =

(
r,−

√
R2 − (r − ρ)2

)
→ (x1, y1) =

(
r,+

√
R2 − (r − ρ)2

)
the

standard starting points.

Observation 1. We soon define three problems whose solutions are equivalent
to Main Problem 1. First, we state the following without proof. By the x-axis
symmetry of the standard construction, the proofs are fairly easy and are left to the
reader.

Suppose we start at the standard (x0, y0) = (r,−y1) and by using the standard
construction we arrive back at (x0, y0) in exactly n steps and also we arrive back
at (x0, y0) just one time in n steps. We call this the standard condition (or the
Poncelet condition).

(1) If n ≥ 3 is odd, then the standard (or Poncelet) condition is met if and only
if in exactly n+1

2 steps we arrive at one of the two points (−R+ ρ, 0),
(R+ ρ, 0).

Also, we pass through this (−R+ ρ, 0) or (R+ ρ, 0) point exactly one
time in n+1

2 steps. Note that we only pass through one of these two points
(−R+ ρ, 0) , (R+ ρ, 0).

Exactly which of these two points we arrive at in n+1
2 steps depends

exactly upon the nature of the n-star that we are dealing with. Of course,
a Poncelet n-polygon will arrive at(−R+ ρ, 0) in exactly n+1

2 steps. The
reader can study analogies of Fig. 2 to see this. When n = 3, we have no
3-stars and we can only arrive at (−R+ ρ, 0) in exactly n+1

2 = 2 steps.
We cannot arrive at (R+ ρ, 0) in 2 steps. When n ≥ 5 is odd, we can have
some n-stars (and one n-polygon) that arrive at (−R+ ρ, 0) in exactly n+1

2

steps, and just one time in n+1
2 steps, and we can have some n-stars that

arrive at (R+ ρ, 0) in exactly n+1
2 steps and just one time in n+1

2 steps.
(2) If n ≥ 4 and n is even, then the standard (or Poncelet) condition is met

if and only if in exactly n
2 steps and just one time in n

2 steps, we arrive at(
−r,+

√
R2 − (−r − ρ)2

)
=

(
−r,+

√
R2 − (r + ρ)2

)
.

We note that there are no n-stars when r = 4 or n = 6. Look at the
analogy of Figure 2 for n = 6.

From Observation 1, Main Problem 1 is equivalent to the Problems 1, 1′, 2 be-
low.

In Problems 1, 1′, 2 as always we consider R and ρ,R > |ρ| ≥ 0, to be fixed
and r to be a variable where R > r + |ρ| , r > 0.
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Problem 1. Suppose n ≥ 3 and n is odd. We wish to find necessary and sufficient
conditions Pn (R, r, ρ) = 0, where Pn (R, r, ρ) is a polynomial in R, r, ρ and R >
r + |ρ| , r > 0, so that if we start at the standard (x0, y0) and use the standard
construction then we will arrive at (−R+ ρ, 0) in exactly n+1

2 steps and we also
pass through (−R+ ρ, 0) just one time in n+1

2 steps.

Problem 1′. Suppose n ≥ 5 and n is odd. We wish to find necessary and sufficient
condition Pn (R, r, ρ) = 0, where Pn (R, r, ρ) is a polynomial in R, r, ρ and R >
r + |ρ| , r > 0, so that if we start at the standard (x0, y0) and use the standard
construction then we will arrive at (R+ ρ, 0) in exactly n+1

2 steps and we also
pass through (R+ ρ, 0) just one time in n+1

2 steps.
The solution to Main Problem 1 when n ≥ 3 and n is odd is P ∗

n = Pn (R, r, ρ) =
0 or P ∗

n = Pn (R, r, ρ) = 0 where R > r + |ρ| , r > 0.
Problem 1′ is degenerate with no solution with R > r+ |ρ| , r > 0, when n = 3.

Problem 2. Suppose n ≥ 4 and n is even. We wish to find necessary and suf-
ficient conditions Pn (R, r, ρ) = 0 where Pn (R, r, ρ) is a polynomial in R, r, ρ
and R > r + |ρ| , r > 0, so that if we start at the standard (x0, y0) and use

the standard construction then we will arrive at

(
−r,+

√
R2 − (−r − ρ)2

)
=(

−r,+
√
R2 − (r + ρ)2

)
in exactly n

2 steps and we also pass through(
−r,

√
R2 − (r + ρ)2

)
just one time in n

2 steps.

The solution to Main Problem 1 when n ≥ 4 and n is even is P ∗
n (R, r, ρ) =

Pn (R, r, ρ) = 0, R > r + |ρ| , r > 0.

6. Weaker conditions on R, r, ρ

To solve Problems 1, 1′, 2 we first compute some weaker conditions on R, r, ρ
where R > r + |ρ| , r > 0.

In this section, we start at the standard (x0, y0) → (x1, y1,m1) and we as-
sume that we have computed (xn, yn,mn) = (xn, Yn · y1,Mn · y1) for each n ∈
{1, 2, 3, · · · } by the recursive algorithm of Section 4.

Problem 1∗. Suppose n ≥ 3 and n is odd. We wish to find necessary and sufficient
conditions Rn (R, r, ρ) = 0 where Rn (R, r, ρ) is a polynomial in R, r, ρ and R >
r + |ρ| , r > 0, so that if we start at the standard (x0, y0) and use the standard
construction of tangents to C2 then we will arrive at (−R+ ρ, 0) in exactly n+1

2
steps. In Problem 1∗ we do not require that we also arrive at (−R+ ρ, 0) just one
time in n+1

2 steps.

Problem 1∗∗. Suppose n ≥ 5 and n is odd. We wish to find necessary and sufficient
conditions Rn (R, r, ρ) = 0 where Rn (R, r, ρ) is a polynomial in R, r, ρ and R >
r + |ρ| , r > 0, so that if we start at the standard (x0, y0) and use the standard
construction of tangents to C2 then we will arrive at (R+ ρ, 0) in exactly n+1

2
steps. In Problem 1∗∗ we do not require that we also arrive at (R+ ρ, 0) just



160 A. Holshouser, S. Molchanov, and H. Reiter

one time in n+1
2 steps. Problem 1∗∗ has no solution when n = 3 that satisfies

R > r + |ρ| , r > 0.

Solution to Problems 1∗, 1∗∗. Problems 1∗, 1∗∗ can be solved by settling xn+1
2

=

−R+ ρ and xn+1
2

= R+ ρ respectively.

This gives the required polynomials Rn (R, r, ρ) = 0 and Rn (R, r, ρ) = 0
where we require R > r + |ρ| , r > 0.

These two equations are equivalent to xn+1
2

−r = −R+ρ−r = − (R+ r − ρ)

and xn+1
2

− r = R− r + ρ respectively.

Since y21 = (R+ r − ρ) (R− r + ρ) probably divides xn+1
2

−r, we see that we
can probably divide out R+r−ρ and R−r+ρ respectively in these two equations.
We can now call these new polynomials Rn (R, r, ρ) = 0, Rn (R, r, ρ) = 0 and as
always, we can write Rn, Rn in the canonical form. These factors R + r − ρ =
0, R − r + ρ = 0 are extraneous since we soon show that they each contradict
R > r + |ρ| , r > 0. We rarely use the above solutions. The following second
solutions are much superior. From Fig. 3, we can solve problem 1∗ by using the

equality
xn−1

2
−(−R+ρ)

yn−1
2

−0 = mn+1
2

. That is, xn−1
2

+ R − ρ = yn−1
2
mn+1

2
= Yn−1

2

Mn+1
2
y21 . This is equivalent to

(
xn−1

2
− r

)
+ (R+ r − ρ) = Yn−1

2
Mn+1

2
y21. (∗)

Since y21|
(
xn−1

2
− r

)
is probably true, we see that R + r − ρ will probably

divide out of (∗). R+ r− ρ = 0 is extraneous since R+ r− ρ = 0, r > 0 implies
ρ = |ρ| = R+ r and R ≯ r+ |ρ| = R+2r. After we divide R+ r− ρ out of (∗),
we call the resulting polynomial equation R′

n (R, r, ρ) = 0.
Now R′

n (R, r, ρ) = 0 is not the solution to Problem 1∗. We now observe that
Rn−2 (R, r, ρ) = 0 gives necessary and sufficient conditions so that the standard
construction arrives at (−R+ ρ, 0) in exactly (n−2)+1

2 = n−1
2 steps, and this will

also solve the above equation (∗) since xn−1
2
+R−ρ = 0 and Yn−1

2
= 0. Therefore,

to compute the true solution to Problem 1∗, we must now eliminate all r-traces of
Rn−2 (R, r, ρ) = 0 from the equation R′

n (R, r, ρ) = 0 by using Algorithm 1 with
emphasis on Comment 1. The divisor of R′

n (R, r, ρ) that is left will be the true
necessary and sufficient conditions Rn (R, r, ρ) = 0, R > r + |ρ| , r > 0, that
solve Problem 1∗.

From Figure 3, we can solve Problem 1∗∗ by using the equality
xn−1

2
−(R+ρ)

yn−1
2

−0 =

mn+1
2

. That is, xn−1
2

− R − ρ = yn−1
2
mn+1

2
= Yn−1

2
Mn+1

2
y21 . This is equivalent

to
(
xn−1

2
− r

)
− (R− r + ρ) = Yn−1

2
Mn+1

2
y21. (∗∗)

Since y21|
(
xn−1

2
− r

)
is probably true, we see that R − r + ρ will probably

divide out of (∗∗).
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Now R− r + ρ = 0 is extraneous since R− r + ρ = 0 implies ρ = − (R− r)
which implies |ρ| = R− r and R ≯ r + |ρ| = R.

After we divide R−r+ρ out of (∗∗), we call the resulting polynomial equation
R

′
n (R, r, ρ) = 0.
Now R

′
n (R, r, ρ) = 0 is not the solution to Problem 1∗∗. We now observe that

Rn−2 (R, r, ρ) = 0 gives necessary and sufficient conditions so that the standard
construction arrives at (R+ ρ, 0) in exactly (n−2)+1

2 = n−1
2 steps and this will also

solve the above equation (∗∗) since xn−1
2

−R− ρ = 0 and Yn−1
2

= 0.

Therefore, to compute the true solution to Problem 1∗∗, we must now eliminate
all r-traces of Rn−2 (R, r, ρ) = 0 from the equation R

′
n (R, r, ρ) = 0 by using

Algorithm 1 with emphasis on Comment 1. The divisor of R
′
n (R, r, ρ) that is

left will be the true necessary and sufficient conditions Rn (R, r, ρ) = 0, R >
r + |ρ| , r > 0, that solve Problem 1∗∗.

Problem 2∗. Suppose n ≥ 4 and n is even. We wish to find necessary and sufficient
conditions Rn (R, r, ρ) = 0 where Rn (R, r, ρ) is a polynomial in R, r, ρ and R >
r+ |ρ| , r > 0, so that if we start at the standard (x0, y0) and use the standard con-

struction of tangents to C2 then we will arrive at

(
−r,+

√
R2 − (−r − ρ)2

)
=(

−r,+
√
R2 − (r + ρ)2

)
in exactly n

2 steps.

In Problem 2∗, we do not require that we also arrive at

(
−r,+

√
R2 − (−r − ρ)2

)

just one time in n
2 steps.

Solution to Problem 2∗. We first define the equation xn
2
= −r where x1, x2, x3, · · ·

have been recursively computed. From Comment 2, we know that r|xn
2

is probably
true.

Therefore, we divide r out of the equation xn
2
= −r where r = 0 is an ex-

traneous factor since it contradicts r > 0. This defines a polynomial equation
R′

n (R, r, ρ) = 0, R > r + |ρ| , r > 0 which gives necessary and sufficient
conditions so that if we start at (x0, y0) and construct tangents to C2 in the stan-

dard way then we will arrive at one or the other of

(
−r,−

√
R2 − (−r − ρ)2

)
,(

−r,+
√

R2 − (−r − ρ)2
)

in exactly n
2 steps (but not necessarily just one time

in n
2 steps).
By induction, we know that Rn−2 = 0, R > r+|ρ| , r > 0, are the necessary and

sufficient conditions so that if we start at the standard (x0, y0) and use the standard

construction of tangents to C2, then we will arrive at

(
−r,+

√
R2 − (−r − ρ)2

)

in exactly n−2
2 = n

2 − 1 steps (but not necessarily just one time in n
2 − 1 steps).
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Now if the standard and construction starting at (x0, y0) arrives at(
−r,−

√
R2 − (−r − ρ)2

)
in exactly n

2 steps, then this construction must also

arrive at

(
−r,+

√
R2 − (−r − ρ)2

)
in exactly n

2 −1 steps. Therefore, if we elim-

inate all r-traces of Rn−2 (R, r, ρ) = 0, R > r+ |ρ| , r > 0, from R′
n (R, r, ρ) = 0

by using Algorithm 1 with emphasis on Comment 1, the divisor of R′
n (R, r, ρ) = 0

that is left will be the necessary and sufficient conditions Rn (R, r, ρ) = 0, R >
r+|ρ| , r > 0, that solves Problem 2∗. As always, we can write Rn in the canonical
form. If we write R′

n and Rn−2 in the canonical form, it may be true that we only
need to divide R′

n(R,r,ρ)
Rn−2(R,r,ρ) = Rn (R, r, ρ).

In any case, if we write R′
n and Rn−2 in the canonical form, then Algorithm 1

can be carried out in only one step.

7. Solving Problem 1, 1′, 2 and Main Problem 1

Notation 1. We now review the notation. As in Section 6, for each n ≥ 3, n odd,
Rn (R, r, ρ) = 0, R > r + |ρ| , r > 0, are the necessary and sufficient conditions
calculated in Section 6 so that the standard construction starting at the standard
(x0, y0) = (r,−y1) arrives at (−R+ ρ, 0) in exactly n+1

2 steps but not necessarily
just one time in n+1

2 steps.
Also, Rn (R, r, ρ) = 0, R > r + |ρ| , r > 0, are the necessary and sufficient

conditions calculated in Section 6 so that the standard construction starting at the
standard (x0, y0) = (r,−y1) arrives at (R+ ρ, 0) in exactly n+1

2 steps, but not
necessarily just one time in n+1

2 steps.
Also, Pn (R, r, ρ) = 0, R > r + |ρ| , r > 0, and Pn (R, r, ρ) = 0, R > r +

|ρ| , r > 0, are the necessary and sufficient conditions so that the standard construc-
tion starting at the standard (x0, y0) = (r,−y1) arrives at (−R+ ρ, 0) , (R+ ρ, 0)
respectively in exactly n+1

2 steps and passes through (−R+ ρ, 0) , (R+ ρ, 0) just
one time in n+1

2 steps.
For each n ≥ 4, n even, Rn (R, r, ρ) = 0, R > r+ |ρ| , r > 0, are the necessary

and sufficient conditions calculated in Section 6 so that the standard construction

starting at the standard (x0, y0) = (−r,−y1) arrives at

(
−r,+

√
R2 − (−r − ρ)2

)

in exactly n
2 steps but not necessarily just one time in n

2 steps.
Also, for each n ≥ 4, n even, Pn (R, r, ρ) = 0, R > r + |ρ|, r > 0, are

the necessary and sufficient conditions so that the standard construction starting at

(x0, y0) = (r,−y1) arrives at

(
−r,+

√
R2 − (−r − ρ)2

)
in exactly n

2 steps and

passes through

(
−r,+

√
R2 − (−r − ρ)2

)
just one time in n

2 steps.

Solution to Problems 1,1′. Suppose n ≥ 3, n is odd, is fixed, and the Problems
1,1′ have been solved for all 3 ≤ n < n where n is odd. We wish to calculate
Pn (R, r, ρ) = 0, R > r + |ρ| , r > 0. The calculation of Pn (R, r, ρ) = 0, R >
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r+ |ρ| , r > 0 in Problem 1′ is exactly the same as the calculation of Pn (R, r, ρ) =
0, R > r + |ρ| , r > 0, in Problem 1.

Suppose 3 ≤ n1 < n2 < · · · < nk < n is the list of all positive odd integers n
that lie in 3 ≤ n < n with the property (†) below.

Of course, as always, for each ni in the list, Pni (R, r, ρ) = 0, R > r+ |ρ| , r >
0, are the necessary and sufficient conditions so that a (Poncelet) ni-gon or ni-star
constructed by the standard construction starting at (x0, y0) = (−r,−y1) arrives
at (−R+ ρ, 0) in exactly ni+1

2 steps and passes through (−R+ ρ, 0) just one time
in ni+1

2 steps.

Property (†). For each ni in the list, we require these (Poncelet) ni-gons or ni-stars
to also arrive at (−R+ ρ, 0) in exactly n+1

2 steps.

In this note, for each odd 3 ≤ n, we compute the above list 3 ≤ n1 < n2 <
· · · < nk < n of odd n′

is adhoc by simply checking each odd 3 ≤ n < n to see if
n has property (†).

For our fixed n ≥ 3, n odd, Rn (R, r, ρ) = 0, R > r + |ρ| , r > 0 are the
necessary and sufficient conditions computed in Section 7 so that the standard con-
struction starting at the standard (x0, y0) = (r1 − y1) arrives at (−R+ ρ, 0) in
exactly n+1

2 steps but not necessarily just one time in n+1
2 steps. Now any stan-

dard construction that arrives at (−R+ ρ, 0) in exactly n+1
2 steps must either pass

through (−R+ ρ, 0) just one time in exactly n+1
2 steps or it has already arrived at

(−R+ ρ, 0) in exactly ni+1
2 steps and passed through (−R+ ρ, 0) just one time

in ni+1
2 steps for some ni in our list 3 ≤ n1 < n2 < · · · < nk < n.

We now eliminate all r-traces of the polynomials Pn1 = 0, Pn2 = 0, · · · , Pnk
=

0 from the polynomial Rn = 0 by using Algorithm 1 of Section 3 with emphasis
on Comment 1 at the end of Algorithm 1. If we use Comment 1 a simple division
may be all that we need to use Algorithm 1.

The polynomial divisor of Rn (R, r, ρ) = 0, R > r + |ρ| , r > 0, that remains
after all r-traces of Pn1 = 0, Pn2 = 0, · · · , Pnk

= 0 have been removed from
Rn (R, r, a) = 0 will be the required polynomial Pn (R, r, ρ) = 0, R > r +
|ρ| , r > 0, that solves Problem 1. The solution to Problem 1′ is almost exactly the
same.

Solution to Problem 2. Suppose n ≥ 4, n even, is fixed and suppose Problem 2
has been solved for all n where 4 ≤ n < n and n is even.

We wish to calculate Pn (R, r, ρ) = 0, R > r + |ρ| , r > 0. The solution is
almost exactly the same as Problems 1, 1′. Suppose 4 ≤ n1 < n2 < · · · < nk < n
is the list of all positive even integers n that lie in 4 ≤ n < n with the property
(††) below.

Of course, as always for each ni in the list, Pni (R, r, ρ) = 0, R > r+|ρ| , r > 0,
are the necessary and sufficient conditions so that the standard construction start-

ing at the standard (x0, y0) = (r,−y1) arrives at

(
−r,+

√
R2 − (−r − ρ)2

)
in
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exactly ni
2 steps and passes through

(
−r,

√
R2 − (−r − a)2

)
just one time in ni

2

steps.

Property (††). For each ni in the list, we require these (Poncelet) ni-gons or ni-

stars to also arrive at

(
−r,

√
R2 − (−r − ρ)2

)
in exactly n

2 steps.

In this note, for each even 4 ≤ n, we compute the above list 4 ≤ n1 < n2 · · · <
nk < n of even ni’s ad hoc by simply checking each even 4 ≤ n < n to see if n
has property (††).

Now Rn (R, r, ρ) = 0, R > r + |ρ| , r > 0, are the necessary and sufficient
conditions computed in Section 7 so that the standard construction starting at the

standard (x0, y0) = (r,−y1) arrives at

(
−r,+

√
R2 − (−r − ρ)2

)
in exactly n

2

steps but not necessarily just one time in n
2 steps.

Now any standard construction that arrives at

(
−r,+

√
R2 − (−r − ρ)2

)
in

exactly n
2 steps must arrive at

(
−r,+

√
R2 − (−r − ρ)2

)
just one time in n

2 steps

or it has already arrived at

(
−r,+

√
R2 − (−r − ρ)2

)
in exactly ni

2 steps and

passed through

(
−r,+

√
R2 − (−r − ρ)2

)
just one time in ni

2 steps for some ni

in our list 4 ≤ n1 < · · · < nk < n.
As in Problems 1, 1′, we now eliminate all r-traces of the polynomial Pn1 =

0, Pn2 = 0, · · · , Pnk
= 0 from Rn (R, r, ρ) = 0 using Algorithm 1 of Section 2

with emphasis on Comment 1 at the end of Algorithm 1. If we use Comment 1, a
simple division may be all that we need to use Algorithm 1.

The polynomial divisor of Rn (R, r, ρ) = 0, R > r + |ρ| , r > 0, that remains
after all r-traces of Pn1 , Pn2 , · · · , Pnk

have been removed from Rn(R, ρ, P ), R >
r+ |ρ|, r > 0 will be the required polynomial Pn(R, r, ρ) = 0, R > r+ |ρ|, r > 0
that solves Problem 2.

Solution to Main Problem 1 As stated in Section 6, the solutions to Problems
1, 1′, 2 give the solution P ∗

n = Pn, P
∗
n = Pn, P

∗
n = Pn where P ∗

n (R, r, ρ) , R >

r + |ρ| , r > 0, is the polynomial solution to Main Problem 1.

8. Some hand calculated examples

We solve Main Problem 1 for n = 3, 4 by hand.

Example 1(n = 3). For n = 3, it is easy to see that P ∗
3 (R, r, ρ) = P3 (R, r, ρ) =

R3 (R, r, ρ) = 0 where R3 (R, r, ρ) = 0 is the polynomial computed for Problem
1∗ in Section 6 using two different methods. We now give both the long first
method and the very short second method.
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From Section 6, we see that the Problem 1∗ equation xn+1
2

= −R+ ρ becomes

x2 = −R+ ρ. The Problem 1∗∗, equation x2 = R+ ρ is degenerate.
From Section 4, (x1, Y1,M1) = (r, 1, 0) and we recall that y21 = R2 − (r − ρ)2

and M2 =
2x1Y1

Y 2
1 ·y21−r2

−M1 =
2r

y21−r2
= 2r

R2−2r2+2ρr−ρ2
.

Using the recursion for x2 of Section 4 and simplifying we see that x2 = −R+ρ
becomes the following.

4r2 (2ρ− r) y21 − 4ry21
(
R2 − 2r2 + 2ρr − ρ2

)
+ r

(
R2 − 2r2 + 2ρr − ρ2

)2
4r2y21 + (R2 − 2r2 + 2ρr − ρ2)2

= −R+ ρ.

This is equivalent to

4ry21
(
2ρr − r2 −R2 + 2r2 − 2ρr + ρ2

)
+ r

(
R2 − 2r2 + 2ρr − ρ2

)2
= 4ry21 (−Rr + ρr) +

(
R2 − 2r2 + 2ρr − ρ2

)2
(−R+ ρ) ,

which is equivalent to

4ry21
(−R2 + r2 +Rr − ρr + ρ2

)
= − (

R2 − 2r2 + 2ρr − ρ2
)2

(R+ r − ρ) .
(‡)

Since y21 = (R+ r − ρ) (R− r + ρ) and R+ r− ρ = 0 is an extraneous equation
that contradicts R > r + |ρ|, r > 0, we see that (‡) is equivalent to the following

4r (−R+ r − ρ)
(−R2 + r2 +Rr − ρr + ρ2

)
=

(
R2 − 2r2 + 2ρr − ρ2

)2
.

When we multiply this out and then simplify this becomes R4 − 4rR3 + 4r2R2 −
2ρ2R2 + 4ρ2rR + ρ4 = 0 which is equivalent to

((
R2 − ρ2

)− 2rR
)2

= 0. This
is equivalent to P ∗

3 = R2 − ρ2 − 2rR = 0 which is the standard Euler’s equation.
The canonical form of Comment 1 would automatically catch this multiplicity. We
now solve Example 1 by computing P ∗

3 = P3 = R
′
3 = R3 by using the short

second method of Problem 1∗ of Section 6.
From x1 = r, Y1 = 1, y21 = (R− r + ρ) (R+ r − ρ) and M2 = 2r

y21−r2
=

2r
R2−2r2+2ρr−ρ2

we see that xn−1
2

+R−ρ = Yn−1
2
Mn+1

2
y21 becomes x1+R−ρ =

Y1M2y
2
1 , which is r +R− ρ = 2r·(R−r+ρ)(R+r−ρ)

R2−2r2+2ρr−ρ2
.

Dividing out the extraneous equation r + R − ρ = 0 this becomes R2 − 2r2 +
2ρr− ρ2 = 2Rr− 2r2 + 2ρr and we see that P ∗

3 = P3 = R′
3 = R3 = R2 − ρ2 −

2rR = 0.

Note 2. We see that the second method is very superior to the first method. If we
try to compute R3 (R, r, ρ) = 0 for n = 3 by the second method of Section 6, we
see that xn−1

2
− R − ρ = Yn−1

2
Mn+1

2
y21 becomes x1 − R − ρ = Y1M2y

2
1 which

is r − R − ρ = 2r
y21−r2

y21 . This is equivalent to − (
y21 − r2

)
= 2r (R+ r − ρ)

which simplifies to ρ2 = R2 + 2rR. This equation is degenerate since we require
R > r + |ρ| , r > 0. However, we need to keep this equation ρ2 − R2 − 2Rr = 0
since this factor will divide out of some of the higher level equations that we will
encounter. In particular, we use ρ2 = R2 + 2rR when we deal with n = 5.
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Example 2 (n = 4). We compute P ∗
4 (R, r, ρ) = P4 = 0 for n = 4. For n = 4 it

is easy to see that P4 (R, r, ρ) = R′
4 (R, r, ρ) = R4 (R, r, ρ) where R′

4 (R, r, ρ) is
the polynomial computed in Problem 2∗ of Section 6. We note that R4 (R, r, ρ) =
R′

4 (R, r, ρ) since Rn−2 = R2 = 2r is degenerate and we are going to divide r out
of R′

4 anyway. Using the formula for x2 given in Example 1, we see that x2 = −r
becomes

4r2y21 (2ρ− r)− 4ry21
(
R2 − 2r2 + 2ρr − ρ2

)
+ r

(
R2 − 2r2 + 2ρr − ρ2

)2
4r2y21 + (R2 − 2r2 + 2ρr − ρ2)2

= −r,

which is equivalent to

4r2y21 (2ρ− r)− 4ry21
(
R2 − 2r2 + 2ρr − ρ2

)
+ r

(
R2 − 2r2 + 2ρr − ρ2

)2
= − r

(
4r2y21 +

(
R2 − 2r2 + 2ρr − ρ2

)2)
.

Dividing out the extraneous r = 0, this becomes

4r (2ρ− r) y21−4y21
(
R2 − 2r2 + 2ρr − ρ2

)
+4r2y21 = −2

(
R2 − 2r2 + 2ρr − ρ2

)2
.

Dividing out 2 and simplifying we have

2y21
(
R2 − 2r2 − ρ2

)
=

(
R2 − 2r2 + 2ρr − ρ2

)2
.

Using y21 = R2 − r2 + 2ρr − ρ2 this becomes

2
(
R2 − r2 + 2ρr − ρ2

) (
R2 − 2r2 − ρ2

)
=

(
R2 − 2r2 + 2ρr − ρ2

)2
.

Multiplying out and simplifying we have R4 − 2ρ2R2 + ρ4 = 2ρ2r2 + 2r2R2,
which is

(
R2 − ρ2

)2
= 2r2

(
R2 + ρ2

)
. This is the standard quadrilateral formula.

9. Some computer generated examples

We solve Main Problem 1 for n = 5, 6, 7 by using a computer.

Example 3 (n = 5). We first compute R′
5 (R, r, ρ) = 0 of Problem 1∗ by using the

equality x2 +R− ρ− Y2M3y
2
1 = 0 which is equivalent to

(x2 − r) + (R+ r − ρ)− Y2M3y
2
1 = 0. (∗)

Dividing by R+ r − ρ and using a computer, we arrive at

R′
5 (R, r, ρ) = 16ρ2R2r4 + 8R

(
R2 − ρ2

)2
r3 − 8R2

(
R2 − ρ2

)2
r2 +

(
R2 − ρ2

)4
= 0.

From Problem 1∗ of Section 6, we know that R3 (R, r, ρ) = 2Rr + ρ2 − R2 = 0
will also solve (∗) where R3 = 0 was computed in Example 1 (n = 3). Therefore,
we must eliminate all r-traces of R3 = 0 from R′

5 = 0. We can do this by dividing
R′

5 by R3 and letting R5 (R, r, ρ) be the quotient. This gives

R5 (R, r, a) = 8ρ2Rr3 + 4R2
(
R2 − ρ2

)
r2 − 2R

(
R2 − ρ2

)2
r − (

R2 − ρ2
)3

= 0.

It is easy to show that R5 = 0 is irreducible in the rational field. We now let
R = 1 and by symmetry suppose 0 ≤ ρ < 1. We know by Descartes’ law
of signs that R5 = 0 has one positive r-root for each fixed 0 ≤ ρ < 1. For
each fixed 0 ≤ ρ < 1, we show that R5 = 0 has one r-root that satisfies
0 < r < 1 − ρ. Now R5 (R, r, ρ) = R5 (1, 0, ρ) = − (1− ρ)3 < 0. We
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now show that R5 (R, r, ρ) = R5 (1, 1− ρ, ρ) > 0. This is true if and only if[
8ρ2 + 4 (1 + ρ)− 2 (1 + ρ)2 − (1 + ρ)3

]
(1− ρ)3 > 0. This is true if and only

if
(
1− 3ρ+ 3ρ2 − ρ3

)
(1− ρ)3 = (1− ρ) 6 > 0, which is true. From this we see

that for each 0 ≤ ρ < 1, R5 = 0 has one r-root that satisfies 0 < r < 1 − ρ.
Therefore, in general for each R > |ρ| ≥ 0, we see that R5 (R, r, ρ) = 0 has one
r-root that satisfies R > r + |ρ| , r > 0. We let P ∗

5 = R5 where P ∗
5 = 0 is one

solution to Main Problem 1.
We next compute R

′
5 (R, r, ρ) = 0 by using the equality x2−R−ρ−Y2M3y

2
1 =

0 which is equivalent to

(x2 − r)−R+ r − ρ− Y2M3y
2
1 = 0. ( c©)

Dividing by r −R− ρ and using a computer we arrive at

R
′
5 (R, r, ρ) = 16ρ2R2r4 − 8R

(
R2 − ρ2

)2
r3 − 8R2

(
R2 − ρ2

)2
r2 +

(
R2 − ρ2

)4
= 0.

Now R3 (R, r, ρ) = −2Rr + ρ2 − R2 = 0 will also solve ( c©). Therefore, we
must eliminate all r-traces of R3 = 0 from R

′
5 = 0. We can do this by dividing R

′
5

by R3 and letting R5 (R, r, ρ) be the quotient. This gives

R5 (R, r, ρ) = −8ρ2Rr3 + 4R2
(
R2 − ρ2

)
r2 + 2R

(
R2 − ρ2

)2
r − (

R2 − ρ2
)3

= 0.

It is easy to show that R5 = 0 is irreducible in the rational field. We now let
R = 1 and by symmetry suppose 0 < ρ < 1. We know by Descartes’ law of signs
that R5 = 0 has zero or two positive r-roots for each fixed 0 < ρ < 1. For each
fixed 0 < ρ < 1 we show that R5 = 0 has one r-root that satisfies 0 < r < 1− ρ.
(ρ = 0 is easy to deal with). Now R5 (R, r, ρ) = R5 (1,+∞, ρ) < 0. Also,
R5 (R, r, ρ) = R5 (1, 0, ρ) < 0. If we show that R5 (R, r, ρ) = R5 (1, 1− ρ, ρ) >
0, then it will follow that for each 0 < ρ < 1, R5 = 0 has one r-root that satisfies
0 < r < 1− ρ. Now R5 (R, r, ρ) = R5 (1, 1− ρ, ρ) > 0 if and only if(

−8ρ2 + 4 (1 + ρ) + 2 (1 + ρ)2 − (1 + ρ)3
)
(1− ρ)3 > 0.

This is true if and only if(
4
(
1 + ρ− 2ρ2

)
+ (1 + ρ)2 (2− (1 + ρ))

)
(1− ρ)3

=
(
4 (1 + 2ρ) (1− ρ) + (1 + ρ)2 (1− ρ)

)
(1− ρ)3

>0.

This is clearly true.
Therefore, in general for each R > |ρ| ≥ 0, we see that R5 (R, r, ρ) = 0 has

one r-root that satisfies R > r + |ρ| , r > 0. We let P ∗
5 = R5 where P ∗

5 = 0 is
that second solution to Main Problem 1.

Therefore, P ∗
5 = R5 and P ∗

5 = R5 are the two solutions to Main Problem 1 for
n = 5.
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Example 4 (n = 6) From Problem 2∗, we define the equation xn
2
= x3 = −r.

We do this with a computer. From Comment 2 we divide r out of x3 = −r
where r = 0 is an extraneous factor since it contradicts r > 0. This defines
a polynomial equation R′

6 (R, r, ρ) = 0 which we store in the computer. From
Problem 2∗, to compute R6 = 0 we must eliminate all r-traces of R4 (R.r.ρ) =

2
(
R2 + ρ2

)
r2 − (

R2 − ρ2
)2

= 0 from R′
6 (R, r, ρ) = 0. This can be done by a

single division R′
6(R,r,ρ)

R4(R,r,ρ) = R6 (R, r, ρ). That is,

R′
6 (R, r, ρ) = R4 (R, r, ρ) ·R6 (R, r, ρ)

=
((

R2 − ρ2
)2 − 2

(
ρ2 +R2

)
r2
)
·R6 (R, r, ρ) ,

where

R6 (R, r, ρ) = 16ρ2R2r4 + 4
(
ρ2 +R2

) (
R2 − ρ2

)2
r2 − 3

(
R2 − ρ2

)4
= 0.

We now let R = 1, 0 ≤ ρ < 1. We know from Descartes’ Law of signs that
R6 (R, r, ρ) = R6 (1, r, ρ) = 0 has one positive r-root for each fixed 0 ≤ ρ < 1.
We now show that for each fixed 0 ≤ ρ < 1, R6 = 0 has one r-root that satisfies
0 < r < 1 − ρ. Now R6 (R, r, ρ) = R6 (1, 0, ρ) = −3

(
1− ρ2

)4
< 0. We now

show that R6 (R, r, ρ) = R6 (1, 1− ρ, ρ) > 0 which will finish the proof. Now
R6 (1, 1− ρ, ρ) > 0 is true if and only if

16ρ2 (1− ρ)4 + 4
(
1 + ρ2

)
(1 + ρ)2 (1− ρ)4 − 3 (1 + ρ)4 (1− ρ)4 > 0.

This is equivalent to

(16ρ2 + 4(1 + ρ2)(1 + ρ)2 − 3(1 + ρ)4)(1− ρ)4

= (ρ4 − 4ρ3 + 6ρ2 − 4ρ+ 1)(1− ρ)4

= (1− ρ)8 > 0,

which is true. From Problem 2 of Section 7, we know that P ∗
6 = P6 = R6 (R, r, a)

where P ∗
6 = 0 solves Main Problem 1 for n = 6.

Example 5 (n = 7). We first compute R′
7 (R, r, ρ) = 0 of Problem 1∗ by using the

equality x3 +R− ρ− Y3M4y
2
1 = 0, which is equivalent to

(x3 − r) + (R+ r − ρ)− Y3M4y
2
1 = 0. (¶)

Dividing by R + r − ρ, we arrive at R′
7 (R, r, ρ) = 0 and we store this in the

computer. From Problem 1∗ of Section 6, we know that

R5 (R, r, ρ) = 8ρ2R2r3+4R2
(
R2 − ρ2

)2
r2−2R

(
R2 − ρ2

)2
r−(

R2 − ρ2
)3

= 0

will also solve (¶), where R5 = 0 was computed in Example 3 (n = 5). Therefore,
we must eliminate all r-traces of R5 = 0 from R′

7 = 0. We can do this by dividing



A special case of Poncelet’s problem 169

R′
7 by R5 and letting R7 (R, r, ρ) be the quotient. This gives

R7 (R, r, ρ) = 64ρ2R4r6 − 32ρ2R
(
R2 − ρ2

) (
R2 + ρ2

)
r5

− 16ρ2R2
(
R2 − ρ2

)2
r4 + 8R

(
R2 + 3ρ2

) (
R2 − ρ2

)3
r3

− 4R2
(
R2 − ρ2

)4
r2 − 4R

(
R2 − ρ2

)5
r +

(
R2 − ρ2

)6
= 0.

The equation R7 (R, r, ρ) = 0 is the same as R7 (R, r, ρ) = 0 except that
R7 (R, r, ρ) = R7 (−R, r, ρ) = R7 (R,−r, ρ) = 0. The solution to Main Problem
1 is P ∗

7 = R7 and P ∗
7 = R7. If we let R = 1, 0 < ρ < 1, we can use a computer

to show that R7 (R, r, ρ) = R7 (1, r, ρ) = 0 has two real r-roots r1, r2 that satisfy
0 < r1 < r2 < 1 − ρ. These two r-roots give the 7-gon and a 7-star that goes
around (0, 0) three times when R = 1. The equation R7(R, r, ρ) = R7 (1, r, ρ)
has one r-root r3 that satisfies 0 < r3 < 1 − ρ. This r3 gives a 7-star that goes
around (0, 0) two times when R = 1.

As is consistent with the general pattern, R7 (R, r, ρ) = R7 (1, 1− ρ, ρ) =

(1− ρ)12. We recall that R6 (1, 1− ρ, ρ) = (1− ρ)8. Also, R5 (1, 1− ρ, ρ) =

(1− ρ)6.
Also, R4 (1, 1− ρ, ρ) = 2 (1− ρ)2

(
1 + ρ2

)− (
1− ρ2

)2
= (1− ρ)4.

Also, R3 (1, 1− ρ, ρ) = 2 (1− ρ)− (
1− ρ2

)
= (1− ρ)2.

In general Ri (1, 1− ρ, ρ) = (1− ρ)2ni where ni is the r-degree of Ri (R, r, ρ).

10. Discussion

It is fairly obvious that the polynomials R3, R4, R5, R6, R7 that we have com-
puted are members of a family. For example they all have powers of 2, i.e. 2, 4,
8, 16, 32, 64,. . . appearing in them. They also have

(
R2 − ρ2

)
,
(
R2 − ρ2

)2
, . . .

appearing in them. In general, they just look alike in some ways. However, the
only true invariant that we have discovered for R3, R4, R5, R6, R7 is that each Ri

satisfies Ri (R, r, ρ) = Ri (1, 1− ρ, ρ) = (1− ρ)2ni , where ni is the r− degree of
Ri (R, r, ρ).
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